/* * Copyright (c) 2017 Actions Semiconductor Co., Ltd * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(mmc_acts, CONFIG_LOG_DEFAULT_LEVEL); /* timeout define */ #define MMC_CMD_TIMEOUT_MS (2000) #define MMC_DAT_TIMEOUT_MS (500) #define MMC_DMA_BUFFER_BUSY_TIMEOUT_US (5000) /* SD_EN register */ #define SD_EN_DW_SHIFT (0) #define SD_EN_DW(x) ((x) << SD_EN_DW_SHIFT) #define SD_EN_DW_MASK SD_EN_DW(0x3) #define SD_EN_DW_1BIT SD_EN_DW(0x0) #define SD_EN_DW_4BIT SD_EN_DW(0x1) #define SD_EN_DW_8BIT SD_EN_DW(0x2) /* ONLY valid in SD0 */ #define SD_EN_SDIO BIT(3) #define SD_EN_FIFO_WIDTH BIT(5) /* 0: 32bits 1: 8bits */ #define SD_EN_BUS_SEL_SHIFT (6) #define SD_EN_BUS_SEL(x) ((x) << SD_EN_BUS_SEL_SHIFT) #define SD_EN_BUS_SEL_MASK SD_EN_BUS_SEL(0x1) #define SD_EN_BUS_SEL_AHB SD_EN_BUS_SEL(0x0) #define SD_EN_BUS_SEL_DMA SD_EN_BUS_SEL(0x1) #define SD_EN_ENABLE BIT(7) #define SD_EN_CLK1 BIT(8) /* 0: clock to pad SD_CLK0; 1: clock to pad SD_CLK1 */ #define SD_EN_SHIFT (9) #define SD_EN_CSS_MASK (1 << SD_EN_SHIFT) #define SD_EN_CSS_LOW (0 << SD_EN_SHIFT) #define SD_EN_CSS_HIGH (1 << SD_EN_SHIFT) #define SD_EN_RAND_SEL BIT(30) /* 0: USE EFFUSE bits; 1: use register SDx_SEED value */ #define SD_EN_RAND_EN BIT(31) /* 0: randomizer disable; 1: randomizer enable */ /* SD_CTL register */ #define SD_CTL_TM_SHIFT (0) #define SD_CTL_TM(x) ((x) << SD_CTL_TM_SHIFT) #define SD_CTL_TM_MASK SD_CTL_TM(0xf) #define SD_CTL_TM_CMD_NO_RESP SD_CTL_TM(0x0) #define SD_CTL_TM_CMD_6B_RESP SD_CTL_TM(0x1) #define SD_CTL_TM_CMD_17B_RESP SD_CTL_TM(0x2) #define SD_CTL_TM_CMD_6B_RESP_BUSY SD_CTL_TM(0x3) #define SD_CTL_TM_CMD_RESP_DATA_IN SD_CTL_TM(0x4) #define SD_CTL_TM_CMD_RESP_DATA_OUT SD_CTL_TM(0x5) #define SD_CTL_TM_DATA_IN SD_CTL_TM(0x6) #define SD_CTL_TM_DATA_OUT SD_CTL_TM(0x7) #define SD_CTL_TM_CLK_OUT_ONLY SD_CTL_TM(0x8) #define SD_CTL_C7EN BIT(5) /* 0: enable CRC7 check; 1: disable CRC7 check */ #define SD_CTL_LBE BIT(6) /* enable last block send 8 more clocks */ #define SD_CTL_START BIT(7) #define SD_CTL_TCN_SHIFT (8) #define SD_CTL_TCN(x) ((x) << SD_CTL_TCN_SHIFT) #define SD_CTL_TCN_MASK SD_CTL_TCN(0xf) #define SD_CTL_SCC BIT(12) #define SD_CTL_CMDLEN BIT(13) /* 0: don't drives CMD line to low; 1: drive CMD line to low */ #define SD_CTL_WDELAY_SHIFT (16) #define SD_CTL_WDELAY(x) ((x) << SD_CTL_WDELAY_SHIFT) #define SD_CTL_WDELAY_MASK SD_CTL_WDELAY(0xf) #define SD_CTL_RDELAY_SHIFT (20) #define SD_CTL_RDELAY(x) ((x) << SD_CTL_RDELAY_SHIFT) #define SD_CTL_RDELAY_MASK SD_CTL_RDELAY(0xf) /* SD_STATE register */ #define SD_STATE_C7ER BIT(0) #define SD_STATE_RC16ER BIT(1) #define SD_STATE_WC16ER BIT(2) #define SD_STATE_CLC BIT(3) #define SD_STATE_CLNR BIT(4) #define SD_STATE_TRANS_IRQ_PD BIT(5) #define SD_STATE_TRANS_IRQ_EN BIT(6) #define SD_STATE_DAT0S BIT(7) #define SD_STATE_SDIO_IRQ_EN BIT(8) #define SD_STATE_SDIO_IRQ_PD BIT(9) #define SD_STATE_DAT1S BIT(10) #define SD_STATE_CMDS BIT(11) #define SD_STATE_MEMRDY BIT(12) #define SD_STATE_FIFO_FULL BIT(12) #define SD_STATE_FIFO_EMPTY BIT(13) #define SD_STATE_FIFO_RESET BIT(14) #define SD_STATE_TIMEOUT_ERROR BIT(15) #define SD_STATE_ERR_MASK (SD_STATE_CLNR | SD_STATE_WC16ER | \ SD_STATE_RC16ER | SD_STATE_C7ER) /* SD_CMD register */ #define SD_CMD_MASK (0xFF) /* SD_BLK_SIZE register */ #define SD_BLK_SIZE_MASK (0x3FF) /* SD_BLK_NUM register */ #define SD_BLK_NUM_MASK (0xFFFF) #define MMC_IS_SD0_DEV(x) ((uint32_t)(x) == SD0_REG_BASE) /* mmc hardware controller */ struct acts_mmc_controller { volatile uint32_t en; volatile uint32_t ctl; volatile uint32_t state; volatile uint32_t cmd; volatile uint32_t arg; volatile uint32_t rspbuf[5]; volatile uint32_t dat; volatile uint32_t blk_size; volatile uint32_t blk_num; }; struct acts_mmc_config { struct acts_mmc_controller *base; void (*irq_config_func)(void); const char *dma_dev_name; uint8_t clock_id; uint8_t reset_id; uint8_t clk_sel; /*0 or 1 select clk0 or clk1*/ uint8_t dma_id; uint8_t dma_chan; uint8_t flag_use_dma:1; uint8_t bus_width:4; uint8_t data_reg_width:3; uint8_t use_irq_gpio:1; uint8_t sdio_irq_gpio; gpio_dt_flags_t sdio_sdio_gpio_flags; char *sdio_irq_gpio_name; }; struct acts_mmc_data { struct k_sem trans_done; const struct device *dma_dev; uint32_t capability; uint8_t rdelay; uint8_t wdelay; uint8_t dma_chan; uint8_t reserved[1]; #if (CONFIG_MMC_YIELD_WAIT_DMA_DONE == 1) struct k_sem dma_sync; #endif void (*sdio_irq_cbk)(void *arg); void *sdio_irq_cbk_arg; const struct device *sdio_irq_gpio_dev; struct gpio_callback sdio_irq_gpio_cb; uint8_t device_release_flag : 1; /* device has been released flag such as sd card pluged out */ }; #if IS_ENABLED(CONFIG_MMC_0)||IS_ENABLED(CONFIG_MMC_1) #if (CONFIG_MMC_ACTS_ERROR_DETAIL == 1) static void mmc_acts_dump_regs(struct acts_mmc_controller *mmc) { LOG_INF( "** mmc contoller register ** \n"); LOG_INF(" BASE: %08x\n", (uint32_t)mmc); LOG_INF(" SD_EN: %08x\n", mmc->en); LOG_INF(" SD_CTL: %08x\n", mmc->ctl); LOG_INF(" SD_STATE: %08x\n", mmc->state); LOG_INF(" SD_CMD: %08x\n", mmc->cmd); LOG_INF(" SD_ARG: %08x\n", mmc->arg); LOG_INF(" SD_RSPBUF0: %08x\n", mmc->rspbuf[0]); LOG_INF(" SD_RSPBUF1: %08x\n", mmc->rspbuf[1]); LOG_INF(" SD_RSPBUF2: %08x\n", mmc->rspbuf[2]); LOG_INF(" SD_RSPBUF3: %08x\n", mmc->rspbuf[3]); LOG_INF(" SD_RSPBUF4: %08x\n", mmc->rspbuf[4]); LOG_INF("SD_BLK_SIZE: %08x\n", mmc->blk_size); LOG_INF(" SD_BLK_NUM: %08x\n", mmc->blk_num); #ifdef CMU_SD0CLK LOG_INF(" CMU_SD0CLK: %08x\n", sys_read32(CMU_SD0CLK)); #endif #ifdef CMU_SD1CLK LOG_INF(" CMU_SD1CLK: %08x\n", sys_read32(CMU_SD1CLK)); #endif } #endif static int mmc_acts_check_err(const struct acts_mmc_config *cfg, struct acts_mmc_controller *mmc, uint32_t resp_err_mask) { uint32_t state = mmc->state & resp_err_mask; if (!(state & SD_STATE_ERR_MASK)) return 0; if (state & SD_STATE_CLNR) LOG_ERR("Command No response"); if (state & SD_STATE_C7ER) LOG_ERR("CRC command response Error"); if (state & SD_STATE_RC16ER) LOG_ERR("CRC Read data Error"); if (state & SD_STATE_WC16ER) LOG_ERR("CRC Write data Error"); return 1; } static void mmc_acts_err_reset(const struct acts_mmc_config *cfg, struct acts_mmc_controller *mmc) { uint32_t en_bak, state_bak; en_bak = mmc->en; state_bak = mmc->state; /* reset mmc controller */ acts_reset_peripheral(cfg->reset_id); mmc->en = en_bak; mmc->state = state_bak; } static void mmc_acts_trans_irq_setup(struct acts_mmc_controller *mmc, bool enable) { uint32_t key, state; key = irq_lock(); state = mmc->state; /* don't clear sdio pending */ state &= ~SD_STATE_SDIO_IRQ_PD; if (enable) state |= SD_STATE_TRANS_IRQ_EN; else state &= ~SD_STATE_TRANS_IRQ_EN; mmc->state = state; irq_unlock(key); } static void mmc_acts_sdio_irq_setup(struct acts_mmc_controller *mmc, bool enable) { uint32_t key, state; key = irq_lock(); state = mmc->state; /* don't clear transfer irq pending */ state &= ~SD_STATE_TRANS_IRQ_PD; if (enable) state |= SD_STATE_SDIO_IRQ_EN; else state &= ~SD_STATE_SDIO_IRQ_EN; mmc->state = state; irq_unlock(key); } static void mmc_acts_isr(void *arg) { struct device *dev = (struct device *)arg; const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; uint32_t state; state = mmc->state; LOG_DBG("enter isr: state 0x%x", state); if ((state & SD_STATE_TRANS_IRQ_EN) && ((state & SD_STATE_TRANS_IRQ_PD) || (state & SD_STATE_ERR_MASK))) { k_sem_give(&data->trans_done); } if ((state & SD_STATE_SDIO_IRQ_EN) && (state & SD_STATE_SDIO_IRQ_PD)) { if (data->sdio_irq_cbk) { data->sdio_irq_cbk(data->sdio_irq_cbk_arg); } } /* clear irq pending, keep the error bits */ mmc->state = state & (SD_STATE_TRANS_IRQ_EN | SD_STATE_SDIO_IRQ_EN | SD_STATE_TRANS_IRQ_PD | SD_STATE_SDIO_IRQ_PD); } static int mmc_acts_get_trans_mode(struct mmc_cmd *cmd, uint32_t *trans_mode, uint32_t *rsp_err_mask) { uint32_t mode =0, err_mask = 0; switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: mode = SD_CTL_TM_CMD_NO_RESP; break; case MMC_RSP_R1: if (cmd->buf) { if (cmd->flags & MMC_DATA_READ) mode = SD_CTL_TM_CMD_RESP_DATA_IN; else if (cmd->flags & MMC_DATA_WRITE) mode = SD_CTL_TM_CMD_RESP_DATA_OUT; else if (cmd->flags & MMC_DATA_WRITE_DIRECT) mode = SD_CTL_TM_DATA_OUT; else if (cmd->flags & MMC_DATA_READ_DIRECT) mode = SD_CTL_TM_DATA_IN; } else { mode = SD_CTL_TM_CMD_6B_RESP; } err_mask = SD_STATE_CLNR | SD_STATE_C7ER | SD_STATE_RC16ER | SD_STATE_WC16ER; break; case MMC_RSP_R1B: mode = SD_CTL_TM_CMD_6B_RESP_BUSY; err_mask = SD_STATE_CLNR | SD_STATE_C7ER; break; case MMC_RSP_R2: mode = SD_CTL_TM_CMD_17B_RESP; err_mask = SD_STATE_CLNR | SD_STATE_C7ER; break; case MMC_RSP_R3: mode = SD_CTL_TM_CMD_6B_RESP; err_mask = SD_STATE_CLNR; break; default: LOG_ERR("unsupported RSP 0x%x\n", mmc_resp_type(cmd)); return -ENOTSUP; } if (trans_mode) *trans_mode = mode; if (rsp_err_mask) *rsp_err_mask = err_mask; return 0; } static int mmc_acts_wait_cmd(struct acts_mmc_controller *mmc, int timeout_ms) { uint32_t start_time, curr_time; start_time = k_cycle_get_32(); while (mmc->ctl & SD_CTL_START) { curr_time = k_cycle_get_32(); if (k_cyc_to_us_floor32(curr_time - start_time) >= (timeout_ms * 1000)) { LOG_ERR("mmc cmd timeout"); return -ETIMEDOUT; } } #if (CONFIG_MMC_WAIT_DAT1_BUSY == 1) start_time = k_cycle_get_32(); while ((mmc->state & SD_STATE_DAT1S) == 0) { curr_time = k_cycle_get_32(); if (k_cyc_to_us_floor32(curr_time - start_time) >= (timeout_ms * 1000)) { LOG_ERR("mmc dat1 timeout"); return -ETIMEDOUT; } } #endif return 0; } static bool mmc_acts_data_is_ready(struct acts_mmc_controller *mmc, bool is_write, bool use_fifo) { uint32_t state = mmc->state; if (use_fifo) if (is_write) return (!(state & SD_STATE_FIFO_FULL)); else return (!(state & SD_STATE_FIFO_EMPTY)); else return (state & SD_STATE_MEMRDY); } static int mmc_acts_transfer_by_cpu(const struct device *dev, bool is_write, uint8_t *buf, int len, uint32_t timeout_ms) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_controller *mmc = cfg->base; uint32_t start_time, curr_time; uint32_t data, data_len; mmc->ctl |= SD_CTL_START; start_time = k_cycle_get_32(); while (len > 0) { if (mmc_acts_check_err(cfg, mmc, SD_STATE_CLNR)) { return -EIO; } if (mmc_acts_data_is_ready(mmc, is_write, CONFIG_MMC_STATE_FIFO)) { data_len = len < cfg->data_reg_width ? len : cfg->data_reg_width; if (is_write) { if (((uint32_t)buf & 0x3) || data_len < cfg->data_reg_width) memcpy(&data, buf, data_len); else data = *((uint32_t *)buf); mmc->dat = data; } else { data = mmc->dat; if (((uint32_t)buf & 0x3) || data_len < cfg->data_reg_width) memcpy(buf, &data, data_len); else *((uint32_t *)buf) = data; } buf += data_len; len -= data_len; } curr_time = k_cycle_get_32(); if (k_cyc_to_us_floor32(curr_time - start_time) >= (timeout_ms * 1000)) { LOG_ERR("mmc io timeout, is_write %d", is_write); return -ETIMEDOUT; } } return 0; } #define DMA_IRQ_TC (0) /* DMA completion flag */ #define DMA_IRQ_HF (1) /* DMA half-full flag */ static void dma_done_callback(const struct device *dev, void *callback_data, uint32_t ch , int type) { struct acts_mmc_data *data = (struct acts_mmc_data *)callback_data; ARG_UNUSED(dev); ARG_UNUSED(ch); if (type != DMA_IRQ_TC) return; LOG_DBG("mmc dma transfer is done:0x%x\n", (u32_t)data); k_sem_give(&data->dma_sync); } static int mmc_dma_wait_timeout(const struct device *dma_dev, uint32_t dma_chan, uint32_t timeout_us) { uint32_t start_time, curr_time; struct dma_status stat = {0}; int ret; start_time = k_cycle_get_32(); while (1) { ret = dma_get_status(dma_dev, dma_chan, &stat); if (ret) { LOG_ERR("get dma(%d) status error %d\n", dma_chan, ret); return -EFAULT; } /* DMA transfer finish */ if (!stat.pending_length) break; curr_time = k_cycle_get_32(); if (k_cyc_to_us_floor32(curr_time - start_time) >= timeout_us) { LOG_ERR("wait mmc dma(%d) finish timeout", dma_chan); return -ETIMEDOUT; } } return 0; } static int mmc_acts_transfer_by_dma(const struct device *dev, bool is_write, uint8_t *buf, int len, uint32_t timeout_ms) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; struct dma_config dma_cfg = {0}; struct dma_block_config dma_block_cfg = {0}; int err; data->device_release_flag = 0; #if (CONFIG_MMC_YIELD_WAIT_DMA_DONE == 1) dma_cfg.dma_callback = dma_done_callback; dma_cfg.user_data = data; dma_cfg.complete_callback_en = 1; #endif dma_cfg.block_count = 1; dma_cfg.head_block = &dma_block_cfg; dma_block_cfg.block_size = len; /* SD0 FIFO width can select 8bits and 32bits */ if (MMC_IS_SD0_DEV(mmc)) { if (mmc->en & SD_EN_FIFO_WIDTH) dma_cfg.dest_data_size = 1; /* fifo width is 8bit */ else dma_cfg.dest_data_size = 4; /* fifo width is 32bit */ } else { /* SD1 FIFO width is fixed 8bits */ dma_cfg.dest_data_size = 1; } if (is_write) { dma_cfg.dma_slot = cfg->dma_id; dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_block_cfg.source_address = (uint32_t)buf; dma_block_cfg.dest_address = (uint32_t)&mmc->dat; } else { dma_cfg.dma_slot = cfg->dma_id; dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_block_cfg.source_address = (uint32_t)&mmc->dat; dma_block_cfg.dest_address = (uint32_t)buf; } if (dma_config(data->dma_dev, data->dma_chan, &dma_cfg)) { LOG_ERR("dma%d config error\n", data->dma_chan); return -1; } if (dma_start(data->dma_dev, data->dma_chan)) { LOG_ERR("dma%d start error\n", data->dma_chan); return -1; } mmc->en |= SD_EN_BUS_SEL_DMA; mmc_acts_trans_irq_setup(mmc, true); /* start mmc controller state machine */ mmc->ctl |= SD_CTL_START; /* wait until data transfer is done */ err = k_sem_take(&data->trans_done, K_MSEC(timeout_ms)); if (data->device_release_flag) { err = -ENXIO; } else { if(!err) { #if (CONFIG_MMC_YIELD_WAIT_DMA_DONE == 1) err = k_sem_take(&data->dma_sync, K_MSEC(timeout_ms)); #else err = mmc_dma_wait_timeout(data->dma_dev, data->dma_chan, MMC_DMA_BUFFER_BUSY_TIMEOUT_US); #endif } if (!err) { /* wait controller idle */ err = mmc_acts_wait_cmd(mmc, timeout_ms); } } mmc_acts_trans_irq_setup(mmc, false); mmc->en &= ~SD_EN_BUS_SEL_DMA; dma_stop(data->dma_dev, data->dma_chan); return err; } static int mmc_acts_transfer_by_query(const struct device *dev, bool is_write, uint8_t *buf, int len, uint32_t timeout_ms) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; struct dma_config dma_cfg = {0}; struct dma_block_config dma_block_cfg = {0}; int err = 0; data->device_release_flag = 0; dma_cfg.block_count = 1; dma_cfg.head_block = &dma_block_cfg; dma_block_cfg.block_size = len; /* SD0 FIFO width can select 8bits and 32bits */ if (MMC_IS_SD0_DEV(mmc)) { if (mmc->en & SD_EN_FIFO_WIDTH) dma_cfg.dest_data_size = 1; /* fifo width is 8bit */ else dma_cfg.dest_data_size = 4; /* fifo width is 32bit */ } else { /* SD1 FIFO width is fixed 8bits */ dma_cfg.dest_data_size = 1; } if (is_write) { dma_cfg.dma_slot = cfg->dma_id; dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_block_cfg.source_address = (uint32_t)buf; dma_block_cfg.dest_address = (uint32_t)&mmc->dat; } else { dma_cfg.dma_slot = cfg->dma_id; dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_block_cfg.source_address = (uint32_t)&mmc->dat; dma_block_cfg.dest_address = (uint32_t)buf; } if (dma_config(data->dma_dev, data->dma_chan, &dma_cfg)) { LOG_ERR("dma%d config error\n", data->dma_chan); return -1; } if (dma_start(data->dma_dev, data->dma_chan)) { LOG_ERR("dma%d start error\n", data->dma_chan); return -1; } mmc->en |= SD_EN_BUS_SEL_DMA; /* start mmc controller state machine */ mmc->ctl |= SD_CTL_START; if (data->device_release_flag) { err = -ENXIO; } else { if(!err) { err = mmc_dma_wait_timeout(data->dma_dev, data->dma_chan, MMC_DMA_BUFFER_BUSY_TIMEOUT_US); } if (!err) { /* wait controller idle */ err = mmc_acts_wait_cmd(mmc, timeout_ms); } } mmc->en &= ~SD_EN_BUS_SEL_DMA; dma_stop(data->dma_dev, data->dma_chan); return err; } static int mmc_acts_send_cmd(const struct device *dev, struct mmc_cmd *cmd) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; int is_write = cmd->flags & (MMC_DATA_WRITE | MMC_DATA_WRITE_DIRECT); uint32_t ctl, rsp_err_mask, len, trans_mode; int err, timeout; extern int check_panic_exe(void); LOG_DBG("CMD%02d: arg 0x%x flags 0x%x is_write %d \n", cmd->opcode, cmd->arg, cmd->flags, !!is_write); LOG_DBG(" blk_num 0x%x blk_size 0x%x, buf %p \n", cmd->blk_num, cmd->blk_size, cmd->buf); trans_mode = 0; err = mmc_acts_get_trans_mode(cmd, &trans_mode, &rsp_err_mask); if (err) { return err; } ctl = trans_mode | SD_CTL_RDELAY(data->rdelay) | SD_CTL_WDELAY(data->wdelay); if (cmd->buf) ctl |= SD_CTL_LBE; /* sdio wifi need continues clock */ if (data->capability & MMC_CAP_SDIO_IRQ) ctl |= SD_CTL_SCC; #if (CONFIG_MMC_SD0_FIFO_WIDTH_8BITS != 1) if (MMC_IS_SD0_DEV(mmc)){ if(((u32_t)cmd->buf & 0x3)) mmc->en |= SD_EN_FIFO_WIDTH; else mmc->en &= ~SD_EN_FIFO_WIDTH; } #endif mmc->ctl = ctl; mmc->arg = cmd->arg; mmc->cmd = cmd->opcode; mmc->blk_num = cmd->blk_num; mmc->blk_size = cmd->blk_size; if (!cmd->buf) { /* only command need to transfer */ mmc->ctl |= SD_CTL_START; } else { /* command with data transfer */ len = cmd->blk_num * cmd->blk_size; timeout = cmd->blk_num * MMC_DAT_TIMEOUT_MS; /* When SD0 FIFO and DMA width is 32bits, data address in memory shall align by 32bits */ if (k_is_in_isr() && check_panic_exe()) { err = mmc_acts_transfer_by_query(dev, is_write, cmd->buf, len, timeout); } else if (!cfg->flag_use_dma) { err = mmc_acts_transfer_by_cpu(dev, is_write, cmd->buf, len, timeout); } else { err = mmc_acts_transfer_by_dma(dev, is_write, cmd->buf, len, timeout); } } err |= mmc_acts_wait_cmd(mmc, MMC_CMD_TIMEOUT_MS); err |= mmc_acts_check_err(cfg, mmc, rsp_err_mask); if (err) { /* * FIXME: the operation of detecting card by polling maybe * output no reponse error message periodically. So filter * it out by config. */ #if (CONFIG_MMC_ACTS_ERROR_DETAIL == 1) LOG_ERR("send cmd%d error, state 0x%x \n", cmd->opcode, mmc->state); mmc_acts_dump_regs(mmc); #endif mmc_acts_err_reset(cfg, mmc); return -EIO; } /* process responses */ if (!cmd->buf && (cmd->flags & MMC_RSP_PRESENT)) { if (cmd->flags & MMC_RSP_136) { /* MSB first */ cmd->resp[3] = mmc->rspbuf[0]; cmd->resp[2] = mmc->rspbuf[1]; cmd->resp[1] = mmc->rspbuf[2]; cmd->resp[0] = mmc->rspbuf[3]; } else { cmd->resp[0] = (mmc->rspbuf[1] << 24) | (mmc->rspbuf[0] >> 8); cmd->resp[1] = (mmc->rspbuf[1] << 24) >> 8; } } return 0; } static int mmc_acts_set_sdio_irq_cbk(const struct device *dev, sdio_irq_callback_t callback, void *arg) { struct acts_mmc_data *data = dev->data; if (!(data->capability & MMC_CAP_SDIO_IRQ)) return -ENOTSUP; data->sdio_irq_cbk = callback; data->sdio_irq_cbk_arg = arg; return 0; } static void sdio_irq_gpio_callback(const struct device *port, struct gpio_callback *cb, uint32_t pins) { struct acts_mmc_data *data = CONTAINER_OF(cb, struct acts_mmc_data, sdio_irq_gpio_cb); ARG_UNUSED(pins); if (data->sdio_irq_cbk) { data->sdio_irq_cbk(data->sdio_irq_cbk_arg); } } static void mmc_acts_sdio_irq_gpio_setup(const struct device *dev, bool enable) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; if (enable) gpio_pin_interrupt_configure(data->sdio_irq_gpio_dev, cfg->sdio_irq_gpio, GPIO_INT_EDGE_TO_ACTIVE); else gpio_pin_interrupt_configure(data->sdio_irq_gpio_dev, cfg->sdio_irq_gpio, GPIO_INT_EDGE_TO_INACTIVE); } static int mmc_acts_enable_sdio_irq(const struct device *dev, bool enable) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; if (!(data->capability & MMC_CAP_SDIO_IRQ)) return -ENOTSUP; if (data->capability & MMC_CAP_4_BIT_DATA) { mmc_acts_sdio_irq_setup(mmc, enable); mmc->en |= SD_EN_SDIO; } else { if(cfg->use_irq_gpio){ mmc_acts_sdio_irq_gpio_setup(dev, enable); } else { LOG_ERR("enable_sdio_irq fail\n"); } } return 0; } static int mmc_acts_set_bus_width(const struct device *dev, unsigned int bus_width) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_controller *mmc = cfg->base; LOG_DBG("bus_width=%d\n", bus_width); if (bus_width == MMC_BUS_WIDTH_1) { mmc->en &= ~SD_EN_DW_MASK; mmc->en |= SD_EN_DW_1BIT; } else if (bus_width == MMC_BUS_WIDTH_4) { mmc->en &= ~SD_EN_DW_MASK; mmc->en |= SD_EN_DW_4BIT; } else if (bus_width == MMC_BUS_WIDTH_8) { mmc->en &= ~SD_EN_DW_MASK; mmc->en |= SD_EN_DW_8BIT; } else { return -EINVAL; } return 0; } #ifdef CONFIG_SOC_SERIES_LEOPARD_FPGA #define LEOPARD_FPGA_MMC_CLK_MAX_HZ (1*1000*1000) //sram-6*1000*1000 #endif static int mmc_acts_set_clock(const struct device *dev, unsigned int rate_hz) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; uint32_t rdelay, wdelay; #ifdef CONFIG_SOC_SERIES_LEOPARD_FPGA if (rate_hz > LEOPARD_FPGA_MMC_CLK_MAX_HZ) rate_hz = LEOPARD_FPGA_MMC_CLK_MAX_HZ; #endif /* * Set the RDELAY and WDELAY based on the sd clk. */ if (rate_hz < 200000) { rdelay = 0xa; wdelay = 0xa; } /*else if (rate_hz <= 15000000) { rdelay = 0xa; wdelay = 0xf; } else if (rate_hz <= 30000000) { rdelay = 0x8; wdelay = 0x9; }*/ else { rdelay = 0x8; wdelay = 0x8; } clk_set_rate(cfg->clock_id, rate_hz); /* config delay chain */ data->rdelay = rdelay; data->wdelay = wdelay; return 0; } static uint32_t mmc_acts_get_capability(const struct device *dev) { struct acts_mmc_data *data = dev->data; return data->capability; } static int mmc_acts_release_device(const struct device *dev) { struct acts_mmc_data *data = dev->data; u32_t key = irq_lock(); data->device_release_flag = 1; k_sem_give(&data->trans_done); k_sem_reset(&data->trans_done); irq_unlock(key); return 0; } static const struct mmc_driver_api mmc_acts_driver_api = { .get_capability = mmc_acts_get_capability, .set_clock = mmc_acts_set_clock, .set_bus_width = mmc_acts_set_bus_width, .send_cmd = mmc_acts_send_cmd, .set_sdio_irq_callback = mmc_acts_set_sdio_irq_cbk, .enable_sdio_irq = mmc_acts_enable_sdio_irq, .release_device = mmc_acts_release_device, }; static int mmc_acts_init(const struct device *dev) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_data *data = dev->data; struct acts_mmc_controller *mmc = cfg->base; int chan; LOG_INF("mmc_acts_init\n"); if(cfg->flag_use_dma) { data->dma_dev = device_get_binding(cfg->dma_dev_name); if (!data->dma_dev) { LOG_ERR("cannot found dma device\n"); return -ENODEV; } chan = dma_request(data->dma_dev, cfg->dma_chan); if(chan < 0){ LOG_ERR("request dma chan config err chan=%d\n", cfg->dma_chan); return -ENODEV; } data->dma_chan = chan; LOG_INF("use dma=%d\n", chan); } if (cfg->use_irq_gpio) { data->sdio_irq_gpio_dev = device_get_binding(cfg->sdio_irq_gpio_name); if (!data->sdio_irq_gpio_dev) { LOG_ERR("cannot found sdio irq gpio dev device %s", cfg->sdio_irq_gpio_name); return -ENODEV; } /* Configure IRQ pin and the IRQ call-back/handler */ gpio_pin_configure(data->sdio_irq_gpio_dev, cfg->sdio_irq_gpio, GPIO_INPUT | GPIO_INT_EDGE_TO_INACTIVE | cfg->sdio_sdio_gpio_flags); gpio_init_callback(&data->sdio_irq_gpio_cb, sdio_irq_gpio_callback, BIT(cfg->sdio_irq_gpio)); if (gpio_add_callback(data->sdio_irq_gpio_dev, &data->sdio_irq_gpio_cb)) { LOG_ERR("add sdio irq fun fail dev device %s", cfg->sdio_irq_gpio_name); return -EINVAL; } } /* enable mmc controller clock */ acts_clock_peripheral_enable(cfg->clock_id); /* reset mmc controller */ acts_reset_peripheral(cfg->reset_id); /* set initial clock */ mmc_acts_set_clock((struct device *)dev, 100000); /* enable mmc controller */ if(cfg->clk_sel) mmc->en |= SD_EN_ENABLE | SD_EN_CLK1; else mmc->en |= SD_EN_ENABLE; #if (CONFIG_MMC_SD0_FIFO_WIDTH_8BITS == 1) if (MMC_IS_SD0_DEV(mmc)) mmc->en |= SD_EN_FIFO_WIDTH; #endif k_sem_init(&data->trans_done, 0, 1); #if (CONFIG_MMC_YIELD_WAIT_DMA_DONE == 1) k_sem_init(&data->dma_sync, 0, 1); #endif if (MMC_IS_SD0_DEV(mmc)) { #if (CONFIG_MMC_0_BUS_WIDTH == 8) data->capability = (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED); #elif (CONFIG_MMC_0_BUS_WIDTH == 4) data->capability = (MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED); #else data->capability = MMC_CAP_SD_HIGHSPEED; #endif #if (CONFIG_MMC_0_ENABLE_SDIO_IRQ == 1) data->capability |= MMC_CAP_SDIO_IRQ; #endif } else { #if (CONFIG_MMC_1_BUS_WIDTH == 4) data->capability = (MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED); #else data->capability = MMC_CAP_SD_HIGHSPEED; #endif #if (CONFIG_MMC_1_ENABLE_SDIO_IRQ == 1) data->capability |= MMC_CAP_SDIO_IRQ; #endif } cfg->irq_config_func(); return 0; } #ifdef CONFIG_PM_DEVICE int mmc_acts_resume_controller(const struct device *dev) { const struct acts_mmc_config *cfg = dev->config; struct acts_mmc_controller *mmc = cfg->base; /* reset mmc controller */ acts_reset_peripheral(cfg->reset_id); /* enable mmc controller */ if(cfg->clk_sel) mmc->en |= SD_EN_ENABLE | SD_EN_CLK1; else mmc->en |= SD_EN_ENABLE; #if (CONFIG_MMC_SD0_FIFO_WIDTH_8BITS == 1) if (MMC_IS_SD0_DEV(mmc)) mmc->en |= SD_EN_FIFO_WIDTH; #endif return 0; } int mmc_acts_pm_control(const struct device *dev, enum pm_device_action action) { int ret = 0; switch (action) { case PM_DEVICE_ACTION_SUSPEND: break; case PM_DEVICE_ACTION_RESUME: /* mmc regs need resume in condition of cpu pwrgating */ mmc_acts_resume_controller(dev); break; default: break; } return ret; } #else #define mmc_acts_pm_control NULL #endif #define dma_use(n) (\ .dma_dev_name = CONFIG_DMA_0_NAME, \ .dma_id = CONFIG_MMC_##n##_DMA_ID,\ .dma_chan = CONFIG_MMC_##n##_DMA_CHAN,\ .flag_use_dma = 1, \ ) #define dma_not(n) (\ .flag_use_dma = 0, \ ) #define gpio_irq_use(n) (\ .sdio_irq_gpio_name = CONFIG_MMC_##n##_GPIO_IRQ_DEV, \ .sdio_irq_gpio = CONFIG_MMC_##n##_GPIO_IRQ_NUM,\ .sdio_sdio_gpio_flags = CONFIG_MMC_##n##_GPIO_IRQ_FLAG,\ .use_irq_gpio = 1, \ ) #define gpio_irq_not(n) (\ .use_irq_gpio = 0, \ ) #define MMC_ACTS_DEFINE_CONFIG(n) \ static const struct device DEVICE_NAME_GET(mmc##n##_acts); \ static void mmc##n##_acts_irq_config(void) \ { \ IRQ_CONNECT(IRQ_ID_SD##n, CONFIG_MMC_##n##_IRQ_PRI, \ mmc_acts_isr, \ DEVICE_GET(mmc##n##_acts), 0); \ irq_enable(IRQ_ID_SD##n); \ } \ static const struct acts_mmc_config mmc_acts_config_##n = { \ .base = (struct acts_mmc_controller *)SD##n##_REG_BASE,\ .irq_config_func = mmc##n##_acts_irq_config, \ .clock_id = CLOCK_ID_SD##n,\ .reset_id = RESET_ID_SD##n,\ .clk_sel = CONFIG_MMC_##n##_CLKSEL,\ .bus_width = CONFIG_MMC_##n##_BUS_WIDTH,\ .data_reg_width = CONFIG_MMC_##n##_DATA_REG_WIDTH,\ COND_CODE_1(CONFIG_MMC_##n##_USE_DMA, dma_use(n), dma_not(n))\ COND_CODE_1(CONFIG_MMC_##n##_USE_GPIO_IRQ, gpio_irq_use(n), gpio_irq_not(n))\ } //irq-gpios #define MMC_ACTS_DEVICE_INIT(n) \ MMC_ACTS_DEFINE_CONFIG(n); \ static struct acts_mmc_data mmc_acts_dev_data_##n ; \ DEVICE_DEFINE(mmc##n##_acts, \ CONFIG_MMC_##n##_NAME, \ &mmc_acts_init, mmc_acts_pm_control, &mmc_acts_dev_data_##n, \ &mmc_acts_config_##n, POST_KERNEL, \ 20, &mmc_acts_driver_api); #if IS_ENABLED(CONFIG_MMC_0) MMC_ACTS_DEVICE_INIT(0) #endif #if IS_ENABLED(CONFIG_MMC_1) MMC_ACTS_DEVICE_INIT(1) #endif #endif //#if IS_ENABLED(CONFIG_MMC_0)||IS_ENABLED(CONFIG_MMC_1)