/* * Copyright (c) 2020 Actions Technology Co., Ltd * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "soc_memctrl.h" #include #include #include #include #include #define DEBUGSEL (0x40068410) #define DEBUGOE0 (0x40068430) #define HOSC_CTL_HOSC_CAP(x) ((x) << HOSC_CTL_HOSC_CAP_SHIFT) /* LOSC_CTL */ #define LOSC_CTL_LOSC_RDY BIT(15) /* CMU_MEMCLKEN1 */ #define BT_ROM_RAM_CLK_EN BIT(16) /* CMU_MEMCLKSRC1 */ #define BT_RAM_CLK_SRC BIT(16) /* CMU_S1CLKCTL */ #define RC64M_S1EN BIT(2) #define HOSC_S1EN BIT(1) #define RC4M_S1EN BIT(0) /* CMU_S1BTCLKCTL */ #define RC64M_S1BTEN BIT(2) #define HOSC_S1BTEN BIT(1) #define RC4M_S1BTEN BIT(0) /* CMU_DEVCLKEN1 */ #define BTHUB_RC32KEN BIT(28) #define BTHUB_RC64MEN BIT(27) #define BTHUB_HOSCEN BIT(26) #define BTHUB_RC4MEN BIT(25) #define BTHUB_LOSCEN BIT(24) #define JTAG_CTL_BTSWEN BIT(20) /* DEBUGSEL */ #define DBGSE_SHIFT 0 #define DBGSE(x) ((x) << DBGSE_SHIFT) #define DBGSE_BT_CONTROLLER DBGSE(0x29) #if defined(CONFIG_BTC_FW_IN_NAND) #define BT_RF_FILE "/NAND:K/bt_rf.bin" #define BT_TABLE_FILE "/NAND:K/bttbl.bin" #define BT_PATCH_FILE "/NAND:K/bt_pth.bin" #define BT_FCC_FILE "/NAND:K/fcc.bin" #define BT_ROM_FILE "/NAND:K/bt_rom.bin" #elif defined(CONFIG_BTC_FW_IN_SD) #define BT_RF_FILE "/SD:K/bt_rf.bin" #define BT_TABLE_FILE "/SD:K/bttbl.bin" #define BT_PATCH_FILE "/SD:K/bt_pth.bin" #define BT_FCC_FILE "/SD:K/fcc.bin" #define BT_ROM_FILE "/SD:K/bt_rom.bin" #elif defined(CONFIG_BTC_FW_IN_NOR_EXT) #define BT_RF_FILE "/NOR:K/bt_rf.bin" #define BT_TABLE_FILE "/NOR:K/bttbl.bin" #define BT_PATCH_FILE "/NOR:K/bt_pth.bin" #define BT_FCC_FILE "/NOR:K/fcc.bin" #define BT_ROM_FILE "/NOR:K/bt_rom.bin" #else #define BT_RF_FILE "bt_rf.bin" #define BT_TABLE_FILE "bttbl.bin" #define BT_PATCH_FILE "bt_pth.bin" #define BT_FCC_FILE "fcc.bin" #define BT_ROM_FILE "bt_rom.bin" #endif //#define BT_RAM1_ADDR (0x01208000) //#define BT_RAM_TABLE_ADDR (0x01200000) //#define BT_RAM_PATCH_ADDR (0x01201310) #define BT_RAM1_ADDR (0x2FF26000) #define BT_RAM_TABLE_ADDR (0x2FF20000) #define BT_RAM_PATCH_ADDR (0x2FF21400) #define BT_ROM_ADDR (0x2FE80000) /* Config pos from bt_table_config.txt */ #define BT_RF_FUNC_ADDR_POS 0x1c #define BT_MAX_RF_POWER_POS_1 0x22 /* tx_max_pwr_lvl */ #define BT_DEFAULT_TX_POWER 0x23 #define BT_MAX_RF_POWER_POS_2 0x25 /* tws_max_pwr_lvl */ #define BT_CFG_WAKEUP_ADVANCE_POS 0x26 #define BT_BLE_RF_POWER_POS 0x29 /* le_tx_pwr_lvl */ #define BT_DUT_MODE 0x2b #define BT_CFG_FIX_MAX_PWR_POS 0x40 #define BT_CFG_FIX_MAX_PWR_BIT 0x3 #define BT_CFG_DISABLE_3M_POS 0x41 #define BT_CFG_DISABLE_3M_BIT 0x1 #define BT_CFG_SEL_32768_POS 0x42 #define BT_CFG_SEL_32768_BIT 0x0 /* Set to 1 */ #define BT_CFG_INIT_K192_BY_HOST_POS 0x42 #define BT_CFG_INIT_K192_BY_HOST_BIT 0x1 #define BT_CFG_FORCE_LIGHT_SLEEP_POS 0x42 #define BT_CFG_FORCE_LIGHT_SLEEP_BIT 0x5 /* Set to 0 */ #define BT_CFG_FORCE_UART_PRINT_POS 0x42 #define BT_CFG_FORCE_UART_PRINT_BIT 0x7 /* Set to 0 */ #define BT_CFG_LE_USING_US_TIMER_POS 0x43 #define BT_CFG_LE_USING_US_TIMER_BIT 0x1 /* Power test set to 0, normal run set to 1, default value 1 */ #define BT_CFG_BT_FAST_BOOT_POS 0x43 #define BT_CFG_BT_FAST_BOOT_BIT 0x2 #define BT_CFG_EFUSE_SET_POS 0x43 #define BT_CFG_EFUSE_SET_BIT 0x4 #define BT_CFG_TRANS_EN_POS 0x43 #define BT_CFG_TRANS_EN_BIT 0x5 /* Set to 1 */ #define BT_CFG_SEL_RC32K_POS 0x44 #define BT_CFG_SEL_RC32K_BIT 0x2 /* Set to 0 */ #define BT_CFG_BQB_DEFAULT_MODE_POS 0x44 #define BT_CFG_BQB_DEFAULT_MODE_BIT 0x4 #define BT_CFG_UART_BAUD_RATE_POS 0x4C /* 0x4c, 0x4d,0x4e,0x4f Little-endian */ #define BT_CFG_EFUSE_AVDD_IF_POS 0x50 #define BT_CFG_EFUSE_POWER_VER_POS 0x54 #define BT_CFG_EFUSE_RF_POS 0x58 #define BT_CFG_IC_PKG_POS 0xB6 #define BT_CFG_UART_BAUD_RATE 2000000 /* 2M */ #define BT_CFG_VD12_SET_S1BT 0xb5 #define EFUSE_POWER_VER 0 #define EFUSE_RF 1 #define EFUSE_AVDD_IF 2 struct ipmsg_btc_config { void *mem_base; uint32_t mem_size; }; struct ipmsg_btc_data { ipmsg_callback_t btc_cb; ipmsg_callback_t tws0_cb; ipmsg_callback_t tws1_cb; ipmsg_pm_ctrl_callback_t pm_ctrl_cb; }; static ipmsg_btc_init_param_t btc_set_param; DEVICE_DECLARE(btc); #ifdef CONFIG_BT_CTRL_DEBUG #ifndef CONFIG_BT_CTRL_LOG #define BT_UART_MFP_SEL 23 static const struct acts_pin_config btc_pin_cfg_uart[] = { {14, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP}, {15, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP}, }; #endif #endif static void ipmsg_btc_isr(void *arg) { struct device *dev = (struct device *)arg; struct ipmsg_btc_data *data = dev->data; //clear irq pending sys_write32(1, PENDING_FROM_BT_CPU); if (data->btc_cb) { data->btc_cb(NULL, NULL); } } static void ipmsg_tws0_isr(void *arg) { struct device *dev = (struct device *)arg; struct ipmsg_btc_data *data = dev->data; if (data->tws0_cb) { data->tws0_cb(NULL, NULL); } } static void ipmsg_tws1_isr(void *arg) { struct device *dev = (struct device *)arg; struct ipmsg_btc_data *data = dev->data; if (data->tws1_cb) { data->tws1_cb(NULL, NULL); } } static void ipmsg_btc_init_param(struct device *dev, void *param) { memcpy(&btc_set_param, param, sizeof(btc_set_param)); } static int sd_load(const char *filename, void *dst) { struct sd_file *sdf; int ret; sdf = sd_fopen(filename); if (!sdf) { return -EINVAL; } ret = sd_fread(sdf, dst, sdf->size); printk("%s size: %d, load: %d\n", filename, sdf->size, ret); if (ret == sdf->size) { ret = 0; } else { printk("load %s failed!\n", filename); ret = -EINVAL; } sd_fclose(sdf); return ret; } #ifdef CONFIG_SD_FS extern bool bt_bqb_is_in_test(void); static inline void bttbl_set_bit(uint8_t *start, uint16_t pos, uint8_t bit) { start[pos] |= (0x1 << bit); } static inline void bttbl_clear_bit(uint8_t *start, uint16_t pos, uint8_t bit) { start[pos] &= (~(0x1 << bit)); } static inline void bttbl_set_value_u8t(uint8_t *start, uint16_t pos, uint8_t value) { start[pos] = value; } static inline void bttbl_set_value_u32t(uint8_t *start, uint16_t pos, uint32_t value) { sys_put_le32(value ,&start[pos]); } static void ipmsg_btc_update_bt_table(void *table_addr) { int err; uint32_t calib_val = 0; uint8_t *start = table_addr; int opt = soc_dvfs_opt(); int valid_number = 0; printk("opt:%d Befor set 0x42 = 0x%x 0x43 = 0x%x 0x44 = 0x%x\n", opt,start[0x42], start[0x43], start[0x44]); err = soc_atp_get_rf_calib(EFUSE_AVDD_IF, &calib_val); printk("get efuse avdd ret:%d value:%x default %x\n", err,calib_val,start[BT_CFG_EFUSE_AVDD_IF_POS]); if (err == 0) { bttbl_set_value_u32t(start, BT_CFG_EFUSE_AVDD_IF_POS, calib_val); valid_number ++; } err = soc_atp_get_rf_calib(EFUSE_POWER_VER, &calib_val); printk("get efuse power version ret:%d value:%x default %x\n", err,calib_val,start[BT_CFG_EFUSE_POWER_VER_POS]); if (err == 0) { bttbl_set_value_u32t(start, BT_CFG_EFUSE_POWER_VER_POS, calib_val); valid_number ++; } err = soc_atp_get_rf_calib(EFUSE_RF, &calib_val); printk("get efuse rf ret:%d value:%x default %x\n", err,calib_val,start[BT_CFG_EFUSE_RF_POS]); if (err == 0) { bttbl_set_value_u32t(start, BT_CFG_EFUSE_RF_POS, calib_val); valid_number ++; } if (valid_number) { bttbl_set_bit(start, BT_CFG_EFUSE_SET_POS, BT_CFG_EFUSE_SET_BIT); } #ifdef CONFIG_BT_CTRL_RF_DEBUG /* 0x106000, bt_rf start address */ bttbl_set_value_u32t(start, BT_RF_FUNC_ADDR_POS, 0x106000); #endif #ifdef CONFIG_IPMSG_BTC_SEL_32K /*ext 32 losc*/ bttbl_set_bit(start, BT_CFG_SEL_32768_POS, BT_CFG_SEL_32768_BIT); #else #if 1 /* Use RC32K */ bttbl_set_bit(start, BT_CFG_SEL_32768_POS, BT_CFG_SEL_32768_BIT); bttbl_set_bit(start, BT_CFG_SEL_RC32K_POS, BT_CFG_SEL_RC32K_BIT); #else /*hcl */ bttbl_clear_bit(start, BT_CFG_SEL_32768_POS, BT_CFG_SEL_32768_BIT); bttbl_clear_bit(start, BT_CFG_SEL_RC32K_POS, BT_CFG_SEL_RC32K_BIT); #endif #endif #ifdef CONFIG_BT_ECC_ACTS bttbl_set_bit(start, BT_CFG_INIT_K192_BY_HOST_POS, BT_CFG_INIT_K192_BY_HOST_BIT); #else bttbl_clear_bit(start, BT_CFG_INIT_K192_BY_HOST_POS, BT_CFG_INIT_K192_BY_HOST_BIT); #endif bttbl_clear_bit(start, BT_CFG_FORCE_LIGHT_SLEEP_POS, BT_CFG_FORCE_LIGHT_SLEEP_BIT); #ifdef CONFIG_BT_CTRL_LOG bttbl_clear_bit(start, BT_CFG_FORCE_UART_PRINT_POS, BT_CFG_FORCE_UART_PRINT_BIT); #else bttbl_set_bit(start, BT_CFG_FORCE_UART_PRINT_POS, BT_CFG_FORCE_UART_PRINT_BIT); #endif #ifdef CONFIG_BT_TRANSMIT bttbl_set_bit(start, BT_CFG_TRANS_EN_POS, BT_CFG_TRANS_EN_BIT); #endif #ifndef CONFIG_BOARD_LARK_DVB_EARPHONE bttbl_set_value_u32t(start, BT_CFG_UART_BAUD_RATE_POS, BT_CFG_UART_BAUD_RATE); printk("Bt uart rate %d\n", BT_CFG_UART_BAUD_RATE); #endif if (btc_set_param.set_max_rf_power) { bttbl_set_value_u8t(start, BT_MAX_RF_POWER_POS_1, btc_set_param.bt_max_rf_tx_power); bttbl_set_value_u8t(start, BT_MAX_RF_POWER_POS_2, btc_set_param.bt_max_rf_tx_power); printk("max rf power %d\n", btc_set_param.bt_max_rf_tx_power); #if 0 /* Fixed tx power */ #define BT_FIX_POWER_LEVEL 38 /* 8db */ bttbl_set_value_u8t(start, BT_MAX_RF_POWER_POS_1, BT_FIX_POWER_LEVEL); bttbl_set_value_u8t(start, BT_MAX_RF_POWER_POS_2, BT_FIX_POWER_LEVEL); bttbl_set_value_u8t(start, BT_DEFAULT_TX_POWER, BT_FIX_POWER_LEVEL); bttbl_set_bit(start, BT_CFG_FIX_MAX_PWR_POS, BT_CFG_FIX_MAX_PWR_BIT); printk("After set 0x22 = %d 0x23 = %d 0x25 = %d\n", start[0x22], start[0x23], start[0x25]); printk("After set 0x40 = 0x%x\n", start[BT_CFG_FIX_MAX_PWR_POS]); #endif } if (btc_set_param.set_ble_rf_power) { bttbl_set_value_u8t(start, BT_BLE_RF_POWER_POS, btc_set_param.ble_rf_tx_power); printk("ble rf tx power %d\n", start[BT_BLE_RF_POWER_POS]); } #ifdef CONFIG_BT_CTRL_BQB if (bt_bqb_is_in_test()) { bttbl_clear_bit(start, BT_CFG_DISABLE_3M_POS, BT_CFG_DISABLE_3M_BIT); bttbl_set_bit(start, BT_CFG_BQB_DEFAULT_MODE_POS, BT_CFG_BQB_DEFAULT_MODE_BIT); bttbl_set_value_u8t(start, BT_DUT_MODE, 0x01); bttbl_set_value_u8t(start, BT_CFG_VD12_SET_S1BT, 0x0E); // VD12 set 1.3V to bt core. } #endif #ifdef CONFIG_BT_FAST_BOOT if (soc_dvfs_opt()) bttbl_set_bit(start, BT_CFG_BT_FAST_BOOT_POS, BT_CFG_BT_FAST_BOOT_BIT); #endif bttbl_set_value_u8t(start, BT_CFG_IC_PKG_POS, ipmsg_btc_get_ic_pkt()); printk("After set 0x42 = 0x%x 0x43 = 0x%x 0x44 = 0x%x\n", start[0x42], start[0x43], start[0x44]); } #endif static int ipmsg_btc_load(struct device *dev, void *data, uint32_t size) { uint32_t val; int err = 0; const struct ipmsg_btc_config *config = dev->config; if (size > config->mem_size) { return -EINVAL; } val = sys_read32(CMU_MEMCLKSRC1) & ~BT_RAM_CLK_SRC; sys_write32(val, CMU_MEMCLKSRC1); #ifdef CONFIG_SD_FS #ifdef CONFIG_BT_FCC_TEST #define BT_RAM_FCC_ADDR BT_RAM_TABLE_ADDR sys_write32((sys_read32(MEMORYCTL) | (0x1<<4)), MEMORYCTL); // bt cpu boot from btram0 k_sleep(K_MSEC(1)); sd_load(CONFIG_IPMSG_BTC_FCC_NAME, (void *)BT_RAM_FCC_ADDR); /* load bt config table */ k_sleep(K_MSEC(1)); return err; #endif #ifdef CONFIG_BT_CTRL_RF_DEBUG err = sd_load(BT_RF_FILE, (void *)BT_RAM1_ADDR); if (err) { return -EINVAL; } #endif err = sd_load(BT_TABLE_FILE, (void *)BT_RAM_TABLE_ADDR); /* load bt config table */ ipmsg_btc_update_bt_table((void *)BT_RAM_TABLE_ADDR); err |= sd_load(BT_PATCH_FILE, (void *)BT_RAM_PATCH_ADDR); /* load bt patch */ #else memcpy(config->mem_base, data, size); #endif return err; } static void ipmsg_btc_soc_set_hoscldo_ctl(void) { int val, i, j, cnt; sys_write32(0x80100204, HOSCLDO_CTL); k_sleep(K_MSEC(10)); val = sys_read32(HOSCLDO_CTL) | (0x1 << HOSCLDO_CTL_OSC32M_EN); sys_write32(val, HOSCLDO_CTL); k_sleep(K_MSEC(10)); val = sys_read32(HOSCLDO_CTL) | (0x1 << HOSCLDO_CTL_OSC32M_CALEN) | (0x1 << HOSCLDO_CTL_OSC32M_CALMODE); sys_write32(val, HOSCLDO_CTL); i = 0; while ((sys_read32(HOSCLDO_CTL) & (0x1 << HOSCLDO_CTL_OSC32M_CALDONE))) { if (i++ > 10) { printk("HOSCLDO_CTL OSC32M wait 0 timeout\n"); break; } k_sleep(K_MSEC(1)); } i = 0; while (1) { cnt = 0; for (j=0; j<3; j++) { if (sys_read32(HOSCLDO_CTL) & (0x1 << HOSCLDO_CTL_OSC32M_CALDONE)) { cnt++; } k_busy_wait(10); } if (cnt == 3) { break; } if (i++ > 50) { printk("HOSCLDO_CTL OSC32M wait 1 timeout\n"); break; } k_sleep(K_MSEC(1)); } val = sys_read32(HOSCLDO_CTL) & HOSCLDO_CTL_OSC32M_FRQCAL_MASK; val >>= HOSCLDO_CTL_OSC32M_FRQCAL_SHIFT; val <<= HOSCLDO_CTL_OSC32M_FRQMSET_SHIFT; val |= 0x80000204; sys_write32(val, HOSCLDO_CTL); } void ipmsg_btc_soc_set_hosc_cap(int cap) { int val; printk("Set hosc cap %d.%d pf\n", cap / 10, cap % 10); val = sys_read32(HOSC_CTL); val &= (~HOSC_CTL_HOSC_CAP_MASK); val |= HOSC_CTL_HOSC_CAP(cap); sys_write32(val, HOSC_CTL); ipmsg_btc_soc_set_hoscldo_ctl(); printk("HOSC_CTL = 0x%x HOSCLDO_CTL = 0x%x\n", sys_read32(HOSC_CTL), sys_read32(HOSCLDO_CTL)); } /* Start BT CPU */ static inline int ipmsg_btc_start(struct device *dev, uint32_t *send_id, uint32_t *recv_id) { uint32_t val; ARG_UNUSED(dev); /* System runing, some bit can't change in HOSC_CTL, init in leopard_init */ //sys_write32(0xa01f9b2, HOSC_CTL); if (btc_set_param.set_hosc_cap) { ipmsg_btc_soc_set_hosc_cap((int)btc_set_param.hosc_capacity); } else { /* Default cap 0x55 */ val = sys_read32(HOSC_CTL) | HOSC_CTL_HOSC_CAP(0x55); sys_write32(val, HOSC_CTL); ipmsg_btc_soc_set_hoscldo_ctl(); printk("HOSC_CTL = 0x%x HOSCLDO_CTL = 0x%x\n", sys_read32(HOSC_CTL), sys_read32(HOSCLDO_CTL)); } #ifdef CONFIG_IPMSG_BTC_SEL_32K sys_write32(0x5515FB, LOSC_CTL); int i = 0; while (!(sys_read32(LOSC_CTL) & LOSC_CTL_LOSC_RDY)) { if (i++ > 500) { printk("LOSC_CTL not ready!\n"); break; } k_sleep(K_MSEC(1)); } #else sys_write32(0x951, HOSCOK_CTL); #endif val = sys_read32(CMU_MEMCLKSRC1) | BT_RAM_CLK_SRC; sys_write32(val, CMU_MEMCLKSRC1); val = sys_read32(CMU_MEMCLKEN1) | BT_ROM_RAM_CLK_EN; sys_write32(val, CMU_MEMCLKEN1); val = sys_read32(CMU_DEVCLKEN1) | BTHUB_RC32KEN | BTHUB_RC64MEN | BTHUB_HOSCEN | BTHUB_RC4MEN | BTHUB_LOSCEN; sys_write32(val, CMU_DEVCLKEN1); #ifdef CONFIG_BT_FCC_TEST val = sys_read32(CMU_S1CLKCTL) | RC64M_S1EN | HOSC_S1EN | RC4M_S1EN; sys_write32(val, CMU_S1CLKCTL); val = sys_read32(CMU_S1BTCLKCTL) | RC64M_S1BTEN | HOSC_S1BTEN | RC4M_S1BTEN; sys_write32(val, CMU_S1BTCLKCTL); #else val = sys_read32(CMU_S1CLKCTL) | HOSC_S1EN | RC4M_S1EN; sys_write32(val, CMU_S1CLKCTL); val = sys_read32(CMU_S1BTCLKCTL) | HOSC_S1BTEN | RC4M_S1BTEN; sys_write32(val, CMU_S1BTCLKCTL); #endif #ifdef CONFIG_BT_CTRL_DEBUG #ifdef CONFIG_BT_CTRL_BQB extern bool bt_bqb_is_in_test(void); if (!bt_bqb_is_in_test()) #endif { sys_write32(DBGSE_BT_CONTROLLER, DEBUGSEL); sys_write32(0x3C000, DEBUGOE0); //sys_write32(0xF03C000, DEBUGOE0); } #ifndef CONFIG_BT_CTRL_LOG acts_pinmux_setup_pins(btc_pin_cfg_uart, ARRAY_SIZE(btc_pin_cfg_uart)); #endif #endif /* BT sleep clock RC4M/4, RAM can deepsleep */ //sys_clear_bit(PWRGATE_DIG, 29); // RAM_BT_FORCE=0 //sys_clear_bit(PWRGATE_DIG, 27); // BT_FORCE=0 #ifdef CONFIG_BT_FAST_BOOT if (soc_dvfs_opt()) soc_powergate_set(POWERGATE_BT_PG_DEV, false); else soc_powergate_set(POWERGATE_BT_PG_DEV, true); #else soc_powergate_set(POWERGATE_BT_PG_DEV, true); #endif /* BT RAM0/1 deepsleep */ sys_write32(sys_read32(RAM_DEEPSLEEP) | 0x03000000, RAM_DEEPSLEEP); acts_reset_peripheral(RESET_ID_BT); irq_enable(IRQ_ID_BT); return 0; } static int ipmsg_btc_stop(struct device *dev) { uint32_t val; ARG_UNUSED(dev); // disable irq irq_disable(IRQ_ID_BT); // reset btc acts_reset_peripheral_assert(RESET_ID_BT); // reset BTRAM clock src val = sys_read32(CMU_MEMCLKSRC1) & ~BT_RAM_CLK_SRC; sys_write32(val, CMU_MEMCLKSRC1); return 0; } static int ipmsg_btc_notify(struct device *dev) { ARG_UNUSED(dev); volatile uint8_t i = 5; // send interrupt to btc sys_write32(0, INT_TO_BT_CPU); while(i--); sys_write32(1, INT_TO_BT_CPU); return 0; } static void ipmsg_btc_register_callback(struct device *dev, ipmsg_callback_t cb, void *context) { struct ipmsg_btc_data *data = dev->data; uint8_t irq = *((uint8_t *)context); switch (irq) { case IPMSG_BTC_IRQ: data->btc_cb = cb; break; case IPMSG_TWS0_IRQ: data->tws0_cb = cb; break; case IPMSG_TWS1_IRQ: data->tws1_cb = cb; break; case IPMSG_REG_PW_CTRL: data->pm_ctrl_cb = (ipmsg_pm_ctrl_callback_t)cb; break; default: printk("Unknown irq %d\n", irq); break; } } static void ipmsg_btc_clear_irq_pending(int32_t irq) { if (irq < 32) { sys_write32((0x1 << irq), NVIC_ICPR0); } else { sys_write32((0x1 << (irq - 32)), NVIC_ICPR1); } } static void ipmsg_btc_irq_enable(struct device *dev, uint8_t irq) { switch (irq) { case IPMSG_BTC_IRQ: irq_enable(IRQ_ID_BT); break; case IPMSG_TWS0_IRQ: ipmsg_btc_clear_irq_pending(IRQ_ID_TWS); irq_enable(IRQ_ID_TWS); break; case IPMSG_TWS1_IRQ: ipmsg_btc_clear_irq_pending(IRQ_ID_TWS1); irq_enable(IRQ_ID_TWS1); break; } } static void ipmsg_btc_irq_disable(struct device *dev, uint8_t irq) { switch (irq) { case IPMSG_BTC_IRQ: irq_disable(IRQ_ID_BT); break; case IPMSG_TWS0_IRQ: irq_disable(IRQ_ID_TWS); break; case IPMSG_TWS1_IRQ: irq_disable(IRQ_ID_TWS1); break; } } static int ipmsg_btc_init(const struct device *dev) { ARG_UNUSED(dev); /* btc irq init */ IRQ_CONNECT(IRQ_ID_BT, CONFIG_BTC_IRQ_PRI, ipmsg_btc_isr, DEVICE_GET(btc), 0); /* tws irq init */ IRQ_CONNECT(IRQ_ID_TWS, CONFIG_TWS_IRQ_PRI, ipmsg_tws0_isr, DEVICE_GET(btc), 0); IRQ_CONNECT(IRQ_ID_TWS1, CONFIG_TWS_IRQ_PRI, ipmsg_tws1_isr, DEVICE_GET(btc), 0); return 0; } #ifdef CONFIG_PM_DEVICE int ipmsg_btc_pm_control(const struct device *device, enum pm_device_action action) { int ret; struct ipmsg_btc_data *data = device->data; if (data && data->pm_ctrl_cb) { data->pm_ctrl_cb(0, action); } switch (action) { case PM_DEVICE_ACTION_RESUME: break; case PM_DEVICE_ACTION_SUSPEND: break; case PM_DEVICE_ACTION_EARLY_SUSPEND: break; case PM_DEVICE_ACTION_LATE_RESUME: break; default: ret = -EINVAL; } return 0; } #else #define ipmsg_btc_pm_control NULL #endif static const struct ipmsg_driver_api ipmsg_btc_driver_api = { .init_param = ipmsg_btc_init_param, .load = ipmsg_btc_load, .start = ipmsg_btc_start, .stop = ipmsg_btc_stop, .notify = ipmsg_btc_notify, .register_callback = ipmsg_btc_register_callback, .enable = ipmsg_btc_irq_enable, .disable = ipmsg_btc_irq_disable, }; static const struct ipmsg_btc_config ipmsg_btc_cfg = { .mem_base = (void *)BTC_REG_BASE, .mem_size = 0x40000, }; static struct ipmsg_btc_data ipmsg_btc_dat; DEVICE_DEFINE(btc, CONFIG_BTC_NAME, &ipmsg_btc_init, ipmsg_btc_pm_control, &ipmsg_btc_dat, &ipmsg_btc_cfg, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &ipmsg_btc_driver_api);