sd8563_timer_acts.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * Copyright (c) 2024 Wingcool Technology Co., Ltd
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /**
  7. * @file
  8. * @brief SD8563 Timer driver for Actions SoC
  9. */
  10. #include <errno.h>
  11. #include <kernel.h>
  12. #include <string.h>
  13. //#include <stdbool.h>
  14. #include <init.h>
  15. #include <irq.h>
  16. #include <drivers/adc.h>
  17. #include <drivers/input/input_dev.h>
  18. #include <sys/util.h>
  19. #include <sys/byteorder.h>
  20. #include <board.h>
  21. #include <soc_pmu.h>
  22. #include <logging/log.h>
  23. #include <device.h>
  24. #include <drivers/gpio.h>
  25. #include <soc.h>
  26. #include <string.h>
  27. #include <drivers/i2c.h>
  28. //#include <board_cfg.h>
  29. #include <drivers/uart.h>
  30. LOG_MODULE_REGISTER(sd8563, CONFIG_SYS_LOG_INPUT_DEV_LEVEL);
  31. #define rtc_slaver_addr (0xA2 >> 1)// 0x51
  32. //#ifndef CONFIG_MERGE_WORK_Q
  33. //#define CONFIG_USED_TP_WORK_QUEUE 0
  34. //#endif
  35. #ifdef CONFIG_USED_TP_WORK_QUEUE
  36. #define CONFIG_TIMER_WORK_Q_STACK_SIZE 1280
  37. struct k_work_q timer_drv_q;
  38. K_THREAD_STACK_DEFINE(timer_work_q_stack, CONFIG_TIMER_WORK_Q_STACK_SIZE);
  39. #endif
  40. struct acts_timer_data {
  41. input_notify_t notify;
  42. const struct device *i2c_dev;
  43. const struct device *gpio_dev;
  44. const struct device *this_dev;
  45. struct gpio_callback key_gpio_cb;
  46. struct k_work init_timer;
  47. bool inited;
  48. #ifdef CONFIG_PM_DEVICE
  49. uint32_t pm_state;
  50. #endif
  51. };
  52. uint16_t timer_crc[2] __attribute((used)) = {0};
  53. uint8_t read_time_data[7] = {0};
  54. static struct acts_timer_data timer_acts_ddata;
  55. static int _sd8563_close_write_protection(const struct device *i2c_dev);
  56. static void _sd8563_open_write_protection(const struct device *i2c_dev);
  57. static void _sd8563_read_time(const struct device *i2c_dev, bool is_uart_send);
  58. static void _sd8563_set_time(const struct device *i2c_dev,
  59. uint8_t set_hour,
  60. uint8_t set_minute,
  61. uint8_t set_week,
  62. uint16_t set_year,
  63. uint8_t set_month,
  64. uint8_t set_day);
  65. extern void uart2_poll_out_ch(int c);
  66. extern uint8_t bySetHour;
  67. extern uint8_t bySetMinute;
  68. extern uint8_t bySetWeekday;
  69. extern uint16_t wSetYear;
  70. extern uint8_t bySetMonth;
  71. extern uint8_t bySetDay;
  72. #include <drivers/hrtimer.h>
  73. #if 1
  74. static struct hrtimer g_rtc_ht_read;
  75. static void timer_acts_handler(struct k_work *work)
  76. {
  77. static struct acts_timer_data *external_rtc = &timer_acts_ddata;
  78. if ((bySetHour != 0xff) || (wSetYear != 0xff))
  79. {
  80. hrtimer_stop(&g_rtc_ht_read);
  81. if (_sd8563_close_write_protection(external_rtc->i2c_dev) == 1)
  82. {
  83. _sd8563_set_time(external_rtc->i2c_dev, bySetHour, bySetMinute, bySetWeekday, wSetYear, bySetMonth, bySetDay);
  84. _sd8563_open_write_protection(external_rtc->i2c_dev);
  85. }
  86. bySetHour = 0xff;
  87. bySetMinute = 0xff;
  88. bySetWeekday = 0xff;
  89. wSetYear = 0xff;
  90. bySetMonth = 0xff;
  91. bySetDay = 0xff;
  92. _sd8563_read_time(external_rtc->i2c_dev, false); //读一次,避免用户在设置后再次快速进入设置界面时数据不正确
  93. hrtimer_restart(&g_rtc_ht_read);
  94. return;
  95. }
  96. _sd8563_read_time(external_rtc->i2c_dev, true); //不在ISR中完成,防止中断嵌套
  97. }
  98. K_WORK_DEFINE(timer_acts, timer_acts_handler);
  99. static void htimer_fun(struct hrtimer *ttimer, void *expiry_fn_arg)
  100. {
  101. //static int t;
  102. //static struct acts_timer_data *external_rtc = &timer_acts_ddata;
  103. //printk("%d ---htimer--\n", t++);
  104. //_sd8563_read_time(external_rtc->i2c_dev, true); //不在ISR中完成,防止中断嵌套
  105. k_work_submit(&timer_acts); //向系统工作队列提交一个工作项,让工作队列的线程将执行该工作
  106. }
  107. static void htimer_read(unsigned int ms)
  108. {
  109. hrtimer_init(&g_rtc_ht_read, htimer_fun, NULL);
  110. hrtimer_start(&g_rtc_ht_read, 1000*ms, 1000*ms);
  111. }
  112. #endif
  113. static void _sd8563_open_write_protection(const struct device *i2c_dev)
  114. {
  115. #if 1
  116. uint8_t write_cmd[2] = {0};
  117. uint8_t read_cmd[7] = {0};
  118. int ret = 0;
  119. printk("_sd8563_read_write_protection\n");
  120. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  121. if (ret != 0)
  122. {
  123. printk("i2c_write_read ERR\n");
  124. }
  125. printk("CTR1 = %d\n", read_cmd[0]);
  126. if (read_cmd[0] & 0x40) //bit6:WRTC=1,write_protection has been opened
  127. {
  128. printk("write_protection has been opened\n");
  129. return;
  130. }
  131. //open_write_protection: 0E寄存器的bit6~bit2依次写入b0000、b10101、b01010、b10111
  132. write_cmd[0] = 0x0E;
  133. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  134. if (ret != 0)
  135. {
  136. printk("i2c_write_read ERR\n");
  137. }
  138. read_cmd[0] = (read_cmd[0] & 0x83);
  139. //bit6~bit2 write b0000
  140. write_cmd[1] = read_cmd[0];
  141. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  142. if (ret != 0)
  143. {
  144. printk("step1 i2c write ERR\n");
  145. return;
  146. }
  147. //bit6~bit2 write b10101
  148. write_cmd[1] = read_cmd[0] | 0x54;
  149. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  150. if (ret != 0)
  151. {
  152. printk("step2 i2c write ERR\n");
  153. return;
  154. }
  155. //bit6~bit2 write b01010
  156. write_cmd[1] = read_cmd[0] | 0x28;
  157. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  158. if (ret != 0)
  159. {
  160. printk("step3 i2c write ERR\n");
  161. return;
  162. }
  163. //bit6~bit2 write b10111
  164. write_cmd[1] = read_cmd[0] | 0x5C;
  165. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  166. if (ret != 0)
  167. {
  168. printk("step4 i2c write ERR\n");
  169. return;
  170. }
  171. k_msleep(1);
  172. write_cmd[0] = 0; //CTR1
  173. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  174. if (ret != 0)
  175. {
  176. printk("i2c_write_read ERR\n");
  177. }
  178. printk("CTR1 = %d\n", read_cmd[0]);
  179. if (read_cmd[0] & 0x40) //bit6:WRTC=1,write_protection has been opened
  180. {
  181. printk("write_protection has been opened\n");
  182. }
  183. printk("_sd8563_open_write_protection exit\n");
  184. #endif
  185. }
  186. static int _sd8563_close_write_protection(const struct device *i2c_dev)
  187. {
  188. #if 1
  189. uint8_t write_cmd[2] = {0};
  190. uint8_t read_cmd[7] = {0};
  191. int ret = 0;
  192. printk("_sd8563_read_write_protection\n");
  193. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  194. if (ret != 0)
  195. {
  196. printk("i2c_write_read ERR\n");
  197. return 0;
  198. }
  199. printk("CTR1 = %d\n", read_cmd[0]);
  200. if ((read_cmd[0] & 0x40) == 0) //bit6:WRTC = 0,write_protection has been closed
  201. {
  202. printk("write_protection has been closed\n");
  203. return 1;
  204. }
  205. //close_write_protection: 0E寄存器的bit6~bit2依次写入b0000、b11100、b00011、b01110
  206. write_cmd[0] = 0x0E;
  207. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  208. if (ret != 0)
  209. {
  210. printk("i2c_write_read ERR\n");
  211. return 0;
  212. }
  213. read_cmd[0] = (read_cmd[0] & 0x83);
  214. //bit6~bit2 write b0000
  215. write_cmd[1] = read_cmd[0];
  216. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  217. if (ret != 0)
  218. {
  219. printk("step1 i2c write ERR\n");
  220. return 0;
  221. }
  222. //bit6~bit2 write b11100
  223. write_cmd[1] = read_cmd[0] | 0x70;
  224. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  225. if (ret != 0)
  226. {
  227. printk("step2 i2c write ERR\n");
  228. return 0;
  229. }
  230. //bit6~bit2 write b00011
  231. write_cmd[1] = read_cmd[0] | 0x0C;
  232. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  233. if (ret != 0)
  234. {
  235. printk("step3 i2c write ERR\n");
  236. return 0;
  237. }
  238. //bit6~bit2 write b01110
  239. write_cmd[1] = read_cmd[0] | 0x38;
  240. ret = i2c_write(i2c_dev, write_cmd, 2, rtc_slaver_addr);
  241. if (ret != 0)
  242. {
  243. printk("step4 i2c write ERR\n");
  244. return 0;
  245. }
  246. k_msleep(1);
  247. write_cmd[0] = 0; //CTR1
  248. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  249. if (ret != 0)
  250. {
  251. printk("i2c_write_read ERR\n");
  252. return 0;
  253. }
  254. printk("CTR1 = %d\n", read_cmd[0]);
  255. if ((read_cmd[0] & 0x40) == 0) //bit6:WRTC = 0,write_protection has been closed
  256. {
  257. printk("write_protection has been closed\n");
  258. return 1;
  259. }
  260. printk("_sd8563_close_write_protection exit\n");
  261. return 0;
  262. #else
  263. return 1;
  264. #endif
  265. }
  266. static void _sd8563_set_time(const struct device *i2c_dev,
  267. uint8_t set_hour,
  268. uint8_t set_minute,
  269. uint8_t set_week,
  270. uint16_t set_year,
  271. uint8_t set_month,
  272. uint8_t set_day)
  273. {
  274. #if 1
  275. uint8_t write_cmd[8] = {0};
  276. uint8_t read_cmd[7] = {0};
  277. bool power_on_set_time_data = false;
  278. int ret = 0;
  279. printk("_sd8563_set_time start\n");
  280. write_cmd[0] = 0x02; //sec
  281. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 1);
  282. if (ret != 0)
  283. {
  284. printk("i2c_write_read ERR\n");
  285. return;
  286. }
  287. if ((set_hour == 0xFF) && (set_year == 0xFF)) //power on
  288. {
  289. printk("read_cmd[0] = %d\n", read_cmd[0]);
  290. if ((read_cmd[0] & 0x80) == 0) //bit7:0SF/
  291. {
  292. printk("bit7:0SF is 0,The time has been set\n");
  293. return;
  294. }
  295. power_on_set_time_data = true;
  296. }
  297. _sd8563_read_time(i2c_dev, false); //read time
  298. //printk("y:%x, mon:%x, week:%x, d:%x, h:%x, min:%x, sec:%x\n",
  299. // read_time_data[6], read_time_data[5], read_time_data[4], read_time_data[3], read_time_data[2], read_time_data[1], read_time_data[0]);
  300. if(set_hour != 0xFF)
  301. {
  302. read_time_data[0] = 0;
  303. set_minute = (set_minute / 10) * 16 + set_minute % 10; //DEC TO BCD CODE
  304. set_hour = (set_hour / 10) * 16 + set_hour % 10; //DEC TO BCD CODE
  305. read_time_data[1] = set_minute;//(set_minute / 10) * 16 + set_minute % 10; //DEC TO BCD CODE
  306. read_time_data[2] = set_hour;//(set_hour / 10) * 16 + set_hour % 10; //DEC TO BCD CODE
  307. read_time_data[4] = set_week % 7;//0:Sun. 1:Mon. 2:Tue. 3:Wed. 4:Thu. 5:Fri. 6:Sat.
  308. }
  309. else if (set_year != 0xFF)
  310. {
  311. if (set_year >= 2000)
  312. {
  313. set_year = set_year - 2000;
  314. }
  315. set_day = (set_day / 10) * 16 + set_day % 10; //DEC TO BCD CODE
  316. set_month = (set_month / 10) * 16 + set_month % 10; //DEC TO BCD CODE
  317. set_year = (set_year / 10) * 16 + set_year % 10; //DEC TO BCD CODE
  318. read_time_data[3] = set_day;//(set_day / 10) * 16 + set_day % 10; //DEC TO BCD CODE
  319. read_time_data[5] = set_month;//(set_month / 10) * 16 + set_month % 10; //DEC TO BCD CODE
  320. read_time_data[6] = set_year;//(set_year / 10) * 16 + set_year % 10; //DEC TO BCD CODE
  321. }
  322. if (power_on_set_time_data == true)
  323. {
  324. //BCD code
  325. write_cmd[1] = 0; //sec
  326. write_cmd[2] = 0x35; //min
  327. write_cmd[3] = 0x11; //hour
  328. write_cmd[4] = 0x12; //day
  329. write_cmd[5] = 0x06; //week
  330. write_cmd[6] = 0x10; //mon
  331. write_cmd[7] = 0x24; //year
  332. printk("power on set time and date\n");
  333. }
  334. else
  335. {
  336. //BCD code
  337. for (uint8_t i = 0; i < 7; i++)
  338. {
  339. write_cmd[i + 1] = read_time_data[i];//(read_time_data[i] / 10) * 16 + read_time_data[i] % 10; //DEC TO BCD CODE
  340. }
  341. //write_cmd[1] = read_time_data[0]; //sec
  342. //write_cmd[2] = read_time_data[1]; //min
  343. //write_cmd[3] = read_time_data[2]; //hour
  344. //write_cmd[4] = read_time_data[3]; //day
  345. //write_cmd[5] = read_time_data[4]; //week
  346. //write_cmd[6] = read_time_data[5]; //mon
  347. //write_cmd[7] = read_time_data[6]; //year
  348. }
  349. ret = i2c_write(i2c_dev, write_cmd, 8, rtc_slaver_addr);
  350. if (ret != 0)
  351. {
  352. printk("i2c write ERR\n");
  353. return;
  354. }
  355. k_msleep(1);
  356. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_cmd, 7);
  357. if (ret != 0)
  358. {
  359. printk("i2c_write_read ERR\n");
  360. return;
  361. }
  362. printk("y:%x, mon:%x, week:%x, d:%x, h:%x, min:%x, sec:%x\n",
  363. read_cmd[6], read_cmd[5], read_cmd[4], read_cmd[3], read_cmd[2], read_cmd[1], read_cmd[0]);
  364. printk("_sd8563_set_time exit\n");
  365. #endif
  366. }
  367. static void _sd8563_read_time(const struct device *i2c_dev, bool is_uart_send)
  368. {
  369. #if 1
  370. uint8_t i, check_sum = 0x52;
  371. uint8_t write_cmd[1] = {0x02};
  372. //static uint8_t read_time_data[7] = {0};
  373. int ret = 0;
  374. //printk("_sd8563_read_time\n");
  375. ret = i2c_write_read(i2c_dev, rtc_slaver_addr, write_cmd, 1, read_time_data, 7);
  376. //ret = i2c_burst_read(i2c_dev, rtc_slaver_addr, 0x02, read_cmd, 3);
  377. //ret = i2c_read(i2c_dev, read_time_data, 7, rtc_slaver_addr);
  378. if (ret != 0)
  379. {
  380. printk("i2c_write_read ERR\n");
  381. }
  382. read_time_data[0] = read_time_data[0] & 0x7F; //bit7:0SF/
  383. read_time_data[5] = read_time_data[5] & 0x7F; //bit7:C/century
  384. if (is_uart_send == false)
  385. {
  386. return;
  387. }
  388. //uart2 send data start ==============================================//
  389. uart2_poll_out_ch(0x5A); //报文表头
  390. uart2_poll_out_ch(0x54);
  391. for (i = 0; i < 7; i++)
  392. {
  393. read_time_data[i] = (read_time_data[i] / 16) * 10 + read_time_data[i] % 16; //DEC TO BCD CODE
  394. check_sum += read_time_data[i];
  395. uart2_poll_out_ch(read_time_data[i]);
  396. }
  397. uart2_poll_out_ch(check_sum); //checksum
  398. //uart2 send data end ==============================================//
  399. //printk("y:20%d, mon:%d, week:%d, d:%d, h:%d, min:%d, sec:%d\n",
  400. // read_time_data[6], read_time_data[5], read_time_data[4], read_time_data[3], read_time_data[2], read_time_data[1], read_time_data[0]);
  401. #endif
  402. }
  403. static void _sd8563_init_work(struct k_work *work)
  404. {
  405. struct acts_timer_data *external_rtc = &timer_acts_ddata;
  406. printk("sd8563 init work\n");
  407. external_rtc->inited = true;
  408. if (_sd8563_close_write_protection(external_rtc->i2c_dev) == 1)
  409. {
  410. //k_msleep(2);
  411. _sd8563_set_time(external_rtc->i2c_dev, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
  412. //k_msleep(2);
  413. _sd8563_open_write_protection(external_rtc->i2c_dev);
  414. }
  415. #if 0
  416. uint8_t i;
  417. for (i=0; i < 20; i++)
  418. {
  419. k_msleep(1000);
  420. _sd8563_read_time(external_rtc->i2c_dev, 0);
  421. }
  422. #endif
  423. htimer_read(1000); //1000ms = 1s
  424. printk("sd8563 init work exit\n");
  425. }
  426. static int _sd8563_acts_init(const struct device *dev)
  427. {
  428. struct acts_timer_data *external_rtc = dev->data;
  429. printk("sd8563 acts init\n");
  430. #if 1
  431. external_rtc->this_dev = (struct device *)dev;
  432. external_rtc->i2c_dev = (struct device *)device_get_binding(CONFIG_SD8563_I2C_NAME);
  433. if (!external_rtc->i2c_dev) {
  434. printk("can not access right i2c device\n");
  435. return -1;
  436. }
  437. external_rtc->inited = false;
  438. k_work_init(&external_rtc->init_timer, _sd8563_init_work);
  439. #ifdef CONFIG_USED_TP_WORK_QUEUE
  440. k_work_queue_start(&timer_drv_q, timer_work_q_stack, K_THREAD_STACK_SIZEOF(timer_work_q_stack), 7, NULL);
  441. k_work_submit_to_queue(&timer_drv_q, &external_rtc->init_timer);
  442. #else
  443. k_work_submit(&external_rtc->init_timer);
  444. #endif
  445. #endif
  446. printk("sd8563 acts init exit\n");
  447. return 0;
  448. }
  449. #ifdef CONFIG_PM_DEVICE
  450. static void _sd8563_suspend(const struct device *dev)
  451. {
  452. //struct acts_timer_data *external_rtc = (struct acts_timer_data *)dev->data;
  453. printk("sd8563 suspend\n");
  454. hrtimer_stop(&g_rtc_ht_read);
  455. }
  456. static void _sd8563_resume(const struct device *dev)
  457. {
  458. struct acts_timer_data *external_rtc = (struct acts_timer_data *)dev->data;
  459. external_rtc->i2c_dev = (struct device *)device_get_binding(CONFIG_SD8563_I2C_NAME);
  460. if (!external_rtc->i2c_dev) {
  461. printk("can not access right i2c device\n");
  462. return;
  463. }
  464. external_rtc->inited = false;
  465. k_work_init(&external_rtc->init_timer, _sd8563_init_work);
  466. printk("sd8563 resume\n");
  467. #ifdef CONFIG_USED_TP_WORK_QUEUE
  468. k_work_submit_to_queue(&tp_drv_q, &external_rtc->init_timer);
  469. #else
  470. k_work_submit(&external_rtc->init_timer);
  471. #endif
  472. }
  473. static int _sd8563_pm_control(const struct device *dev, enum pm_device_action action)
  474. {
  475. int ret = 0;
  476. //printk("sd8563 pm control\n");
  477. switch (action) {
  478. case PM_DEVICE_ACTION_SUSPEND:
  479. break;
  480. case PM_DEVICE_ACTION_RESUME:
  481. break;
  482. case PM_DEVICE_ACTION_EARLY_SUSPEND:
  483. _sd8563_suspend(dev);
  484. break;
  485. case PM_DEVICE_ACTION_LATE_RESUME:
  486. _sd8563_resume(dev);
  487. break;
  488. default:
  489. break;
  490. }
  491. return ret;
  492. }
  493. #else /* CONFIG_PM_DEVICE */
  494. static int _sd8563_pm_control(const struct device *dev, uint32_t ctrl_command,
  495. void *context, device_pm_cb cb, void *arg)
  496. {
  497. }
  498. #endif
  499. #if IS_ENABLED(CONFIG_SD8563)
  500. DEVICE_DEFINE(sd8563, CONFIG_SD8563_DEV_NAME, _sd8563_acts_init,
  501. _sd8563_pm_control, &timer_acts_ddata, NULL, POST_KERNEL,
  502. 50, NULL);
  503. #endif