partition.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. #include <kernel.h>
  2. #include <init.h>
  3. #include <string.h>
  4. #include <soc.h>
  5. #include <crc.h>
  6. #include <partition/partition.h>
  7. #include <logging/log.h>
  8. LOG_MODULE_REGISTER(partition, CONFIG_LOG_DEFAULT_LEVEL);
  9. #define PARTITION_TABLE_MAGIC 0x54504341 // 'ACPT'
  10. struct partition_table {
  11. u32_t magic;
  12. u16_t version;
  13. u16_t table_size;
  14. u16_t part_cnt;
  15. u16_t part_entry_size;
  16. u8_t reserved1[4];
  17. struct partition_entry parts[MAX_PARTITION_COUNT];
  18. u8_t Reserved2[4];
  19. u32_t table_crc;
  20. };
  21. static const struct partition_table *g_part_table;
  22. void partition_dump(void)
  23. {
  24. const struct partition_entry *part;
  25. char part_name[13];
  26. int i;
  27. printk("** Showing partition infomation **\n");
  28. printk("id name offset type file_id mirror_id flag\n");
  29. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  30. part = &g_part_table->parts[i];
  31. /* name field to str */
  32. memcpy(part_name, part->name, 8);
  33. part_name[8] = '\0';
  34. if (strlen(part_name) && part->type) {
  35. printk("%-4d%-10s0x%-8x%-6d%-9d%-11d%-6d\n",
  36. i, part_name, part->offset, part->type,
  37. part->file_id, part->mirror_id, part->flag);
  38. }
  39. }
  40. }
  41. int partition_get_max_file_size(const struct partition_entry *part)
  42. {
  43. if (!part)
  44. return -EINVAL;
  45. return (part->size - (part->file_offset - part->offset));
  46. }
  47. const struct partition_entry *partition_find_part(u32_t nor_phy_addr)
  48. {
  49. const struct partition_entry *part;
  50. unsigned int i;
  51. __ASSERT_NO_MSG(g_part_table);
  52. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  53. part = &g_part_table->parts[i];
  54. if ((part->offset <= nor_phy_addr) &&
  55. ((part->offset + part->size) > nor_phy_addr)) {
  56. return part;
  57. }
  58. }
  59. return NULL;
  60. }
  61. const struct partition_entry *partition_get_part_by_id(u8_t part_id)
  62. {
  63. __ASSERT_NO_MSG(g_part_table);
  64. if (part_id >= MAX_PARTITION_COUNT)
  65. return NULL;
  66. return &g_part_table->parts[part_id];
  67. }
  68. const struct partition_entry *partition_get_current_part(void)
  69. {
  70. u32_t cur_phy_addr;
  71. const boot_info_t *p_boot_info = soc_boot_get_info();
  72. __ASSERT_NO_MSG(g_part_table);
  73. cur_phy_addr = p_boot_info->system_phy_addr;
  74. return partition_find_part(cur_phy_addr);
  75. }
  76. u8_t partition_get_current_mirror_id(void)
  77. {
  78. const struct partition_entry *part;
  79. part = partition_get_current_part();
  80. if (part == NULL)
  81. return -1;
  82. return part->mirror_id;
  83. }
  84. u8_t partition_get_current_file_id(void)
  85. {
  86. const struct partition_entry *part;
  87. part = partition_get_current_part();
  88. if (part == NULL)
  89. return -1;
  90. return part->file_id;
  91. }
  92. int partition_is_mirror_part(const struct partition_entry *part)
  93. {
  94. u8_t mirror_id;
  95. const struct partition_entry *cur_part;
  96. const boot_info_t *p_boot_info = soc_boot_get_info();
  97. __ASSERT_NO_MSG(g_part_table);
  98. if (partition_is_boot_part(part)) {
  99. cur_part = partition_find_part(p_boot_info->mbrec_phy_addr);
  100. mirror_id = cur_part->mirror_id;
  101. } else if (partition_is_param_part(part)) {
  102. cur_part = partition_find_part(p_boot_info->param_phy_addr);
  103. mirror_id = cur_part->mirror_id;
  104. } else {
  105. mirror_id = partition_get_current_mirror_id();
  106. }
  107. if ((part->mirror_id != mirror_id) && (part->mirror_id != PARTITION_MIRROR_ID_INVALID)) {
  108. return 1;
  109. }
  110. return 0;
  111. }
  112. const struct partition_entry *partition_get_part_by_type_mirrorid(u8_t type, u8_t mirrorid)
  113. {
  114. const struct partition_entry *part;
  115. int i;
  116. __ASSERT_NO_MSG(g_part_table);
  117. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  118. part = &g_part_table->parts[i];
  119. if ((part->type == type) && (part->mirror_id == mirrorid)) {
  120. return part;
  121. }
  122. }
  123. return NULL;
  124. }
  125. int partition_is_param_part(const struct partition_entry *part)
  126. {
  127. __ASSERT_NO_MSG(g_part_table);
  128. if (part->type == PARTITION_TYPE_PARAM)
  129. return 1;
  130. return 0;
  131. }
  132. int partition_is_boot_part(const struct partition_entry *part)
  133. {
  134. __ASSERT_NO_MSG(g_part_table);
  135. if (part->type == PARTITION_TYPE_BOOT)
  136. return 1;
  137. return 0;
  138. }
  139. const struct partition_entry *partition_get_part(u8_t file_id)
  140. {
  141. const struct partition_entry *part;
  142. int i;
  143. __ASSERT_NO_MSG(g_part_table);
  144. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  145. part = &g_part_table->parts[i];
  146. if ((part->file_id == file_id) && !partition_is_mirror_part(part)) {
  147. return part;
  148. }
  149. }
  150. return NULL;
  151. }
  152. const struct partition_entry *partition_get_part_for_temp(u8_t file_id)
  153. {
  154. const struct partition_entry *part;
  155. int i;
  156. __ASSERT_NO_MSG(g_part_table);
  157. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  158. part = &g_part_table->parts[i];
  159. if (part->file_id == file_id) {
  160. return part;
  161. }
  162. }
  163. return NULL;
  164. }
  165. const struct partition_entry *partition_get_temp_part(void)
  166. {
  167. const struct partition_entry *temp_part;
  168. temp_part = partition_get_part_for_temp(PARTITION_FILE_ID_OTA_TEMP);
  169. if (temp_part == NULL || (temp_part->type != PARTITION_TYPE_TEMP)) {
  170. LOG_ERR("cannot found temp part\n");
  171. return NULL;
  172. }
  173. return temp_part;
  174. }
  175. const struct partition_entry *partition_get_mirror_part(u8_t file_id)
  176. {
  177. const struct partition_entry *part;
  178. int i;
  179. __ASSERT_NO_MSG(g_part_table);
  180. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  181. part = &g_part_table->parts[i];
  182. if ((part->file_id == file_id) && partition_is_mirror_part(part)) {
  183. /* found */
  184. LOG_INF("found write part %d for file_id 0x%x\n", i, file_id);
  185. return part;
  186. }
  187. }
  188. return NULL;
  189. }
  190. const struct partition_entry *partition_get_stf_part(u8_t stor_id, u8_t file_id)
  191. {
  192. const struct partition_entry *part;
  193. int i;
  194. __ASSERT_NO_MSG(g_part_table);
  195. for (i = 0; i < MAX_PARTITION_COUNT; i++) {
  196. part = &g_part_table->parts[i];
  197. if (((part->storage_id == stor_id) || (part->storage_id== STORAGE_ID_MAX)) && (part->file_id == file_id)) {
  198. /* found */
  199. LOG_INF("found write part %d for file_id 0x%x\n", i, file_id);
  200. return part;
  201. }
  202. }
  203. return NULL;
  204. }
  205. int partition_file_mapping(u8_t file_id, u32_t vaddr)
  206. {
  207. const struct partition_entry *part;
  208. int err, crc_is_enabled;
  209. part = partition_get_part(file_id);
  210. if (part == NULL) {
  211. LOG_ERR("cannot found file_id %d\n", file_id);
  212. return -ENOENT;
  213. }
  214. crc_is_enabled = part->flag & PARTITION_FLAG_ENABLE_CRC ? 1 : 0;
  215. err = soc_memctrl_mapping(vaddr, part->file_offset, crc_is_enabled);
  216. if (err) {
  217. LOG_ERR("cannot mapping file_id %d\n", file_id);
  218. return err;
  219. }
  220. return 0;
  221. }
  222. int partition_valid_check(void)
  223. {
  224. if(g_part_table == NULL)
  225. return -1;
  226. else
  227. return 0;
  228. }
  229. static int partition_init(const struct device *dev)
  230. {
  231. u32_t cksum;
  232. g_part_table = (const struct partition_table *)soc_boot_get_part_tbl_addr();
  233. if (g_part_table == NULL ||
  234. g_part_table->magic != PARTITION_TABLE_MAGIC) {
  235. LOG_ERR("partition table (%p) has wrong magic\n", g_part_table);
  236. goto failed;
  237. }
  238. cksum = utils_crc32(0, (const uint8_t *)g_part_table, sizeof(struct partition_table) - 4);
  239. if (cksum != g_part_table->table_crc) {
  240. LOG_ERR("partition table (%p) checksum error\n", g_part_table);
  241. goto failed;
  242. }
  243. partition_dump();
  244. return 0;
  245. failed:
  246. g_part_table = NULL;
  247. return 0;
  248. }
  249. SYS_INIT(partition_init, PRE_KERNEL_1, 60);