printk_dma.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /*
  2. * Copyright (c) 2018 Nordic Semiconductor ASA
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. */
  7. #include <kernel.h>
  8. #include <device.h>
  9. #include <init.h>
  10. #include <string.h>
  11. #include <drivers/uart.h>
  12. #include <drivers/uart_dma.h>
  13. #include "cbuf.h"
  14. #define TRUE 1
  15. #define FALSE 0
  16. typedef struct
  17. {
  18. struct device *uart_dev;
  19. cbuf_t cbuf;
  20. //uint8_t sending;
  21. uint8_t init;
  22. uint8_t panic;
  23. #ifdef CONFIG_PRINTK_DMA_FULL_LOST
  24. uint32_t drop_bytes;
  25. #endif
  26. cbuf_dma_t dma_setting;
  27. }printk_ctx_t;
  28. static printk_ctx_t g_pr_ctx;
  29. static unsigned char dma_printk_buffer[CONFIG_DMA_PRINTK_BUF_SIZE];
  30. K_SEM_DEFINE(log_uart_dma_sem, 0, 1);
  31. static void dma_stop_tx(printk_ctx_t *ctx)
  32. {
  33. unsigned int lock;
  34. lock = irq_lock();
  35. if (ctx->dma_setting.read_len != 0)
  36. {
  37. if(cbuf_is_ptr_valid(&ctx->cbuf, (uint32_t)ctx->dma_setting.start_addr)){
  38. cbuf_dma_update_read_ptr(&ctx->cbuf, ctx->dma_setting.read_len);
  39. }
  40. ctx->dma_setting.read_len = 0;
  41. }
  42. //ctx->sending = FALSE;
  43. uart_acts_dma_send_stop(ctx->uart_dev);
  44. irq_unlock(lock);
  45. }
  46. static int _dma_start_tx(printk_ctx_t *ctx)
  47. {
  48. int32_t data_size;
  49. //if(!ctx->sending){
  50. if (ctx->dma_setting.read_len == 0){
  51. data_size = cbuf_get_used_space(&ctx->cbuf);
  52. if(data_size > 0){
  53. if(data_size > (CONFIG_DMA_PRINTK_BUF_SIZE/4)) // Prevents printk threads from blocking for too long
  54. data_size = (CONFIG_DMA_PRINTK_BUF_SIZE/4);
  55. cbuf_dma_read(&ctx->cbuf, &ctx->dma_setting, (uint32_t)data_size);
  56. if(ctx->dma_setting.read_len){
  57. ///ctx->sending = TRUE;
  58. uart_dma_send(ctx->uart_dev, (char *)ctx->dma_setting.start_addr, ctx->dma_setting.read_len);
  59. return 1;
  60. }
  61. }
  62. return 0;
  63. }
  64. return 1;
  65. }
  66. static int dma_start_tx(printk_ctx_t *ctx)
  67. {
  68. int ret;
  69. unsigned int lock;
  70. lock = irq_lock();
  71. ret = _dma_start_tx(ctx);
  72. irq_unlock(lock);
  73. return ret;
  74. }
  75. #ifdef CONFIG_PRINTK_DMA_FULL_LOST
  76. static void check_drops_output(printk_ctx_t *p_ctx)
  77. {
  78. uint32_t irq_flag;
  79. int free_space;
  80. char tmp_buf[8];
  81. if(p_ctx->drop_bytes == 0)
  82. return;
  83. irq_flag = irq_lock();
  84. free_space = cbuf_get_free_space(&p_ctx->cbuf);
  85. if(free_space > 8){
  86. tmp_buf[0] = '\n';
  87. tmp_buf[1] = '@';
  88. p_ctx->drop_bytes = p_ctx->drop_bytes % 10000;
  89. tmp_buf[2] = '0' + p_ctx->drop_bytes/1000;
  90. p_ctx->drop_bytes = p_ctx->drop_bytes % 1000;
  91. tmp_buf[3] = '0' + p_ctx->drop_bytes/100;
  92. p_ctx->drop_bytes = p_ctx->drop_bytes % 100;
  93. tmp_buf[4] = '0' + p_ctx->drop_bytes/10;
  94. p_ctx->drop_bytes = p_ctx->drop_bytes % 10;
  95. tmp_buf[5] = '0' + p_ctx->drop_bytes;
  96. tmp_buf[6] = '@';
  97. tmp_buf[7] = '\n';
  98. cbuf_write(&p_ctx->cbuf, (void *)tmp_buf, 8);
  99. }
  100. p_ctx->drop_bytes = 0;
  101. irq_unlock(irq_flag);
  102. }
  103. #endif
  104. static void dma_send_finshed(printk_ctx_t *ctx)
  105. {
  106. dma_stop_tx(ctx);
  107. dma_start_tx(ctx);
  108. #ifdef CONFIG_PRINTK_DMA_FULL_LOST
  109. check_drops_output(ctx);
  110. #endif
  111. k_sem_give(&log_uart_dma_sem);
  112. }
  113. static void dma_send_sync(printk_ctx_t *ctx)
  114. {
  115. unsigned int lock;
  116. // lock irq avoid print nested call in isr context, maybe cause lock irq too long.
  117. lock = irq_lock();
  118. // output all cache data
  119. while(1){
  120. // wait transmit finished
  121. if(uart_acts_dma_send_complete(ctx->uart_dev)){
  122. dma_stop_tx(ctx);
  123. #ifdef CONFIG_PRINTK_DMA_FULL_LOST
  124. check_drops_output(ctx);
  125. #endif
  126. }else{
  127. continue;
  128. }
  129. if(!dma_start_tx(ctx)){
  130. break;
  131. }
  132. }
  133. irq_unlock(lock);
  134. }
  135. static void uart_dma_callback(const struct device *dev, void *arg, uint32_t ch, int error)
  136. {
  137. printk_ctx_t *ctx = (printk_ctx_t *)arg;
  138. dma_send_finshed(ctx);
  139. }
  140. static int uart_dma_switch(printk_ctx_t *ctx, unsigned int use_dma, dma_callback_t dma_handler)
  141. {
  142. if(use_dma){
  143. if(uart_dma_send_init(ctx->uart_dev, uart_dma_callback, ctx))
  144. return -1;
  145. uart_fifo_switch(ctx->uart_dev, 1, UART_FIFO_TYPE_DMA);
  146. }else{
  147. uart_dma_send_stop(ctx->uart_dev);
  148. uart_fifo_switch(ctx->uart_dev, 1, UART_FIFO_TYPE_CPU);
  149. }
  150. return 0;
  151. }
  152. static int cbuf_output(const unsigned char *buf, unsigned int len, printk_ctx_t *p_ctx)
  153. {
  154. uint32_t irq_flag;
  155. int free_space;
  156. if(len == 0)
  157. return 0;
  158. while(1){
  159. irq_flag = irq_lock();
  160. free_space = cbuf_get_free_space(&p_ctx->cbuf);
  161. if(free_space > len ){
  162. break;
  163. }else{
  164. #ifdef CONFIG_PRINTK_DMA_FULL_LOST
  165. p_ctx->drop_bytes += len;
  166. irq_unlock(irq_flag);
  167. if(p_ctx->drop_bytes > 0x10000 ) {
  168. if(uart_acts_dma_send_complete(p_ctx->uart_dev) && p_ctx->dma_setting.read_len){ // lost irq
  169. dma_send_finshed(p_ctx);
  170. continue;
  171. }
  172. }
  173. return 0;
  174. #else
  175. irq_unlock(irq_flag);
  176. if(k_is_in_isr()) {
  177. while(!uart_acts_dma_send_complete(p_ctx->uart_dev));
  178. dma_send_finshed(p_ctx);
  179. continue;
  180. }
  181. if(k_sem_take(&log_uart_dma_sem, K_MSEC(500))){
  182. #if 1
  183. if(uart_acts_dma_send_complete(p_ctx->uart_dev) && p_ctx->dma_setting.read_len){ // lost irq
  184. dma_send_finshed(p_ctx);
  185. }
  186. #endif
  187. }
  188. #endif
  189. }
  190. }
  191. cbuf_write(&p_ctx->cbuf, (void *)buf, len);
  192. irq_unlock(irq_flag);
  193. return len;
  194. }
  195. /*must > 32*/
  196. #define CTX_TMP_BUF_LEN 64
  197. struct buf_out_ctx {
  198. uint8_t count;
  199. char buf[CTX_TMP_BUF_LEN];
  200. };
  201. static int buf_char_out(int c, void *ctx_p)
  202. {
  203. struct buf_out_ctx *ctx = ctx_p;
  204. if(ctx->count >= (CTX_TMP_BUF_LEN-2)){
  205. cbuf_output(ctx->buf, ctx->count, &g_pr_ctx);
  206. ctx->count = 0;
  207. }
  208. if ('\n' == c) {
  209. ctx->buf[ctx->count++] = '\r';
  210. }
  211. ctx->buf[ctx->count++] = c;
  212. return 0;
  213. }
  214. static void ctx_buf_flush(struct buf_out_ctx *ctx)
  215. {
  216. if(ctx->count){
  217. cbuf_output(ctx->buf, ctx->count, &g_pr_ctx);
  218. ctx->count = 0;
  219. }
  220. }
  221. #ifdef CONFIG_PRINTK_TIME_FREFIX
  222. static const uint8_t digits[] = "0123456789abcdef";
  223. static int hex_to_str_num(char *num_str, int buflen, uint32_t num_val, int mv)
  224. {
  225. uint8_t ch;
  226. int num_len, len, i;
  227. buflen--;
  228. num_len = buflen;
  229. while(num_val != 0){
  230. if(num_len < 0)
  231. break;
  232. ch = digits[num_val % 10];
  233. num_str[num_len--] = ch;
  234. num_val /= 10;
  235. }
  236. len = (buflen-num_len);
  237. num_len++;
  238. if(mv) {
  239. for(i = 0; i < len; i++){
  240. num_str[i] = num_str[num_len++];
  241. }
  242. }else{
  243. for(i = 0; i < num_len; i++){
  244. num_str[i] = '0';
  245. }
  246. len = buflen+1;
  247. }
  248. return len;
  249. }
  250. //#define PRINT_US
  251. #ifdef PRINT_US
  252. static struct k_timer ktimer_printk;
  253. static uint32_t g_low_cycle, g_high_cycle;
  254. static void timer_printk_update(uint32_t *low, uint32_t *high)
  255. {
  256. uint32_t cyc;
  257. unsigned int lock;
  258. lock = irq_lock();
  259. cyc = k_cycle_get_32();
  260. if(cyc < g_low_cycle)
  261. g_high_cycle++;
  262. g_low_cycle = cyc;
  263. if(low != NULL)
  264. *low = g_low_cycle;
  265. if(high != NULL)
  266. *high = g_high_cycle;
  267. irq_unlock(lock);
  268. }
  269. static void timer_printk_cyc(struct k_timer *timer)
  270. {
  271. timer_printk_update(NULL, NULL);
  272. }
  273. static void timer_printk_init(void)
  274. {
  275. g_low_cycle = k_cycle_get_32();
  276. g_high_cycle = 0;
  277. k_timer_init(&ktimer_printk, timer_printk_cyc, NULL);
  278. k_timer_start(&ktimer_printk, K_MSEC(1000), K_MSEC(1000));
  279. }
  280. static void get_time_s_us(uint32_t *s, uint32_t *us)
  281. {
  282. uint32_t hcyc, lcyc;
  283. uint64_t cyc, sec;
  284. timer_printk_update(&lcyc, &hcyc);
  285. cyc = hcyc;
  286. cyc = (cyc << 32) + lcyc;
  287. cyc =cyc/(sys_clock_hw_cycles_per_sec()/1000000); // us
  288. sec = cyc/1000000; //second
  289. *us = cyc - sec*1000000; //us
  290. *s = sec;
  291. }
  292. static int get_time_prefix(char *num_str)
  293. {
  294. uint32_t sec, us;
  295. char *pc = num_str;
  296. get_time_s_us(&sec, &us);
  297. *pc++='[';
  298. if(sec) {
  299. pc += hex_to_str_num(pc, 9, sec, 1);
  300. *pc++=':';
  301. }else{
  302. *pc++='0';
  303. *pc++=':';
  304. }
  305. sec = us/1000;
  306. pc += hex_to_str_num(pc, 3, sec , 0);
  307. *pc++='.';
  308. pc += hex_to_str_num(pc, 3, us-sec*1000 , 0);
  309. *pc++=']';
  310. return (pc-num_str);
  311. }
  312. #else
  313. static int get_time_prefix(char *num_str)
  314. {
  315. int64_t ms_cnt;
  316. uint32_t sec, ms;
  317. char *pc = num_str;
  318. ms_cnt = k_uptime_get();
  319. sec = ms_cnt/1000;
  320. ms = ms_cnt - sec*1000;
  321. *pc++='[';
  322. if(sec) {
  323. pc += hex_to_str_num(pc, 9, sec, 1);
  324. *pc++=':';
  325. }else{
  326. *pc++='0';
  327. *pc++=':';
  328. }
  329. pc += hex_to_str_num(pc, 3, ms , 0);
  330. *pc++=']';
  331. return (pc-num_str);
  332. }
  333. #endif
  334. #endif
  335. //typedef int (*out_func_t)(int c, void *ctx);
  336. //extern void z_vprintk(out_func_t out, void *ctx, const char *fmt, va_list ap);
  337. #include <sys/cbprintf.h>
  338. extern void __vprintk(const char *fmt, va_list ap);
  339. //const char panic_inf[] = "----printk switch to cpu print panic-----\r\n";
  340. #ifdef CONFIG_PRINTK
  341. void vprintk(const char *fmt, va_list args)
  342. {
  343. printk_ctx_t *pctx = &g_pr_ctx;
  344. struct buf_out_ctx ctx_buf;
  345. if(!pctx->init){
  346. __vprintk(fmt, args);
  347. return ;
  348. }
  349. if(pctx->panic){
  350. //cbuf_output(panic_inf, sizeof(panic_inf), pctx);
  351. dma_send_sync(pctx);
  352. k_busy_wait(100000); //wait fifo send finshed
  353. uart_dma_switch(pctx, 0, NULL); // CPU
  354. pctx->init = FALSE;
  355. __vprintk(fmt, args);
  356. return;
  357. }
  358. #ifdef CONFIG_PRINTK_TIME_FREFIX
  359. ctx_buf.count = get_time_prefix(ctx_buf.buf);
  360. #else
  361. ctx_buf.count = 0;
  362. #endif
  363. cbvprintf(buf_char_out, &ctx_buf, fmt, args);
  364. ctx_buf_flush(&ctx_buf);
  365. dma_start_tx(pctx);
  366. }
  367. #endif
  368. int uart_dma_send_buf(const uint8_t *buf, int len)
  369. {
  370. printk_ctx_t *pctx = &g_pr_ctx;
  371. int ret;
  372. if(!pctx->init){
  373. k_str_out((char *)buf, len);
  374. return len;
  375. }
  376. ret = cbuf_output(buf ,len, pctx);
  377. dma_start_tx(pctx);
  378. return ret;
  379. }
  380. void trace_set_panic(void)
  381. {
  382. printk_ctx_t *pctx = &g_pr_ctx;
  383. //printk("$$---trace_set_panic-----##\n");
  384. pctx->panic = 1;
  385. //printk("---trace_set_panic end-----\n");
  386. }
  387. #if defined(CONFIG_STDOUT_CONSOLE)
  388. extern void __stdout_hook_install(int (*hook)(int));
  389. #else
  390. #define __stdout_hook_install(x) \
  391. do { /* nothing */ \
  392. } while ((0))
  393. #endif
  394. static struct buf_out_ctx __act_s2_notsave g_std_buf;
  395. K_MUTEX_DEFINE(std_buf_dma_mutex);
  396. static int dma_std_out(int c)
  397. {
  398. struct buf_out_ctx *ctx = &g_std_buf;
  399. if(!g_pr_ctx.init)
  400. return 0;
  401. k_mutex_lock(&std_buf_dma_mutex, K_FOREVER);
  402. if(ctx->count >= (CTX_TMP_BUF_LEN-2)){
  403. cbuf_output(ctx->buf, ctx->count, &g_pr_ctx);
  404. ctx->count = 0;
  405. }
  406. if ('\n' == c) {
  407. ctx->buf[ctx->count++] = '\r';
  408. ctx->buf[ctx->count++] = c;
  409. cbuf_output(ctx->buf, ctx->count, &g_pr_ctx);
  410. dma_start_tx(&g_pr_ctx);
  411. ctx->count = 0;
  412. }else{
  413. ctx->buf[ctx->count++] = c;
  414. }
  415. k_mutex_unlock(&std_buf_dma_mutex);
  416. return c;
  417. }
  418. void printk_dma_switch(int sw_dma)
  419. {
  420. printk_ctx_t *pctx = &g_pr_ctx;
  421. if(pctx->uart_dev == NULL)
  422. return;
  423. if(sw_dma){
  424. g_std_buf.count = 0;
  425. printk("printk use dma\n");
  426. uart_dma_switch(pctx, 1, uart_dma_callback);
  427. pctx->init = TRUE;
  428. }else{
  429. printk("printk use cpu\n");
  430. dma_send_sync(pctx);
  431. k_busy_wait(1000); //wait fifo send finshed
  432. uart_dma_switch(pctx, 0, NULL); // CPU
  433. pctx->init = FALSE;
  434. }
  435. }
  436. #if defined(CONFIG_PM)
  437. #include <pm/pm.h>
  438. /*call before enter sleep*/
  439. static void printk_pm_notifier_entry(enum pm_state state)
  440. {
  441. printk_dma_switch(0);
  442. #if 0
  443. printk_ctx_t *pctx = &g_pr_ctx;
  444. printk("printk use cpu\n");
  445. dma_send_sync(pctx);
  446. k_busy_wait(1000); //wait fifo send finshed
  447. uart_dma_switch(pctx, 0, NULL); // CPU
  448. pctx->init = FALSE;
  449. #endif
  450. }
  451. /*call after exit sleep*/
  452. static void printk_pm_notifier_exit(enum pm_state state)
  453. {
  454. printk_dma_switch(1);
  455. #if 0
  456. printk_ctx_t *pctx = &g_pr_ctx;
  457. g_std_buf.count = 0;
  458. printk("printk use dma\n");
  459. uart_dma_switch(pctx, 1, uart_dma_callback);
  460. pctx->init = TRUE;
  461. #endif
  462. }
  463. static struct pm_notifier printk_notifier = {
  464. .state_entry = printk_pm_notifier_entry,
  465. .state_exit = printk_pm_notifier_exit,
  466. };
  467. #endif
  468. static int printk_dma_init(const struct device *dev)
  469. {
  470. printk_ctx_t *pctx = &g_pr_ctx;
  471. printk("printk_dma_init\n");
  472. g_std_buf.count = 0;
  473. pctx->uart_dev = (struct device *)device_get_binding(CONFIG_UART_CONSOLE_ON_DEV_NAME);
  474. if(pctx->uart_dev == NULL){
  475. printk("printk_dma_init fail\n");
  476. return -1;
  477. }
  478. cbuf_init(&pctx->cbuf, (void *)dma_printk_buffer, CONFIG_DMA_PRINTK_BUF_SIZE);
  479. if(uart_dma_switch(pctx, 1, uart_dma_callback)) {
  480. printk("printk_dma_init,uart dma not config\n");
  481. return -1;
  482. }
  483. __stdout_hook_install(dma_std_out);
  484. pctx->init = TRUE;
  485. #if defined(CONFIG_PRINTK_TIME_FREFIX)
  486. #ifdef PRINT_US
  487. timer_printk_init();
  488. #endif
  489. #endif
  490. #if defined(CONFIG_PM)
  491. pm_notifier_register(&printk_notifier);
  492. #endif
  493. return 0;
  494. }
  495. SYS_INIT(printk_dma_init, APPLICATION, 1);