flash_test_delaychain.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #include <drivers/flash.h>
  2. #include <drivers/spi.h>
  3. #include <logging/log.h>
  4. #include <soc.h>
  5. #include <board_cfg.h>
  6. #include "spi_flash.h"
  7. #ifdef CONFIG_SOC_LEOPARD
  8. #define DELAY_CHAIN_NUM 64
  9. #else
  10. #define DELAY_CHAIN_NUM 16
  11. #endif
  12. //static inline void test_setup_delaychain(struct spinor_info *sni, u8_t ns)
  13. //{
  14. //struct acts_spi_reg *spi= (struct acts_spi_reg *)sni->spi.base;
  15. //spi->ctrl = (spi->ctrl & ~(0xF << 16)) | (ns << 16);
  16. //volatile int i = 100000;
  17. //while (i--);
  18. //}
  19. #define TEST_READ_WRITE
  20. #ifdef TEST_READ_WRITE
  21. #if defined(CONFIG_SPI_FLASH_GPIO_2CS) && (CONFIG_SPI_FLASH_GPIO_2CS == 1)
  22. static u32_t TEST_ADDR = 0x200000;
  23. static u32_t TEST_ADDR_END = 0x400000;
  24. #else
  25. #define TEST_ADDR 0x200000
  26. #define TEST_ADDR_END 0x400000
  27. #endif
  28. #define TEST_SIZE (1024*4)
  29. static u32_t nor_test_buf[TEST_SIZE/4];
  30. static u32_t nor_test_start= 0x200000;
  31. __ramfunc int test_read_write_try(const struct device *dev, u8_t delay_chain)
  32. {
  33. int ret, i;
  34. struct spinor_info *sni = (struct spinor_info *)(dev)->data;
  35. sni->spi.delay_chain = delay_chain;
  36. if(nor_test_start < TEST_ADDR || nor_test_start >= TEST_ADDR_END)
  37. nor_test_start = TEST_ADDR;
  38. ret = flash_erase(dev, nor_test_start, TEST_SIZE);
  39. for(i = 0; i < TEST_SIZE/4; i++)
  40. nor_test_buf[i] = nor_test_start + i;
  41. ret = flash_write(dev, nor_test_start, nor_test_buf, TEST_SIZE);
  42. memset(nor_test_buf, 0 , TEST_SIZE);
  43. ret = flash_read(dev, nor_test_start, nor_test_buf, TEST_SIZE);
  44. if(ret){
  45. //test_setup_delaychain(sni, CONFIG_SPI_FLASH_DELAY_CHAIN);
  46. printk("read write fail =0x%x\n", nor_test_start);
  47. return -1;
  48. }
  49. for(i = 0; i < TEST_SIZE/4; i++){
  50. if( nor_test_buf[i] != nor_test_start + i){
  51. //test_setup_delaychain(sni, CONFIG_SPI_FLASH_DELAY_CHAIN);
  52. printk("read 0x%x != 0x%x\n", nor_test_start + i, nor_test_buf[i]);
  53. nor_test_start += TEST_SIZE;
  54. return -1;
  55. }
  56. }
  57. nor_test_start += TEST_SIZE;
  58. return 0;
  59. }
  60. #endif
  61. __ramfunc u32_t test_delaychain_read_id(const struct device *dev, u8_t delay_chain)
  62. {
  63. u32_t nor_id, mid;
  64. struct spinor_info *sni = (struct spinor_info *)(dev)->data;
  65. sni->spi.delay_chain = delay_chain;
  66. /* configure delay chain */
  67. //test_setup_delaychain(sni, sni->spi.delay_chain);
  68. //k_busy_wait(50);
  69. nor_id = p_spinor_api->read_chipid(sni) & 0xffffff;
  70. mid = nor_id & 0xff;
  71. if ((mid == 0xff) || (mid == 0x00))
  72. return 0;
  73. return nor_id;
  74. }
  75. __ramfunc s32_t test_delaychain_try(const struct device *dev, u8_t *ret_delaychain, u32_t chipid_ref)
  76. {
  77. u32_t i, try_delaychain;
  78. bool match_flag = 0;
  79. //u32_t nor_id_value_check;
  80. u32_t local_irq_save;
  81. local_irq_save = irq_lock();
  82. ret_delaychain[0] = 0;
  83. for (try_delaychain = 1; try_delaychain < DELAY_CHAIN_NUM; try_delaychain++) {
  84. match_flag = 1;
  85. printk("try_delaychain :%d\n", try_delaychain);
  86. soc_udelay(5000);
  87. #ifdef TEST_READ_WRITE
  88. for (i = 0; i < 2; i++) {
  89. if(test_read_write_try(dev, try_delaychain)){
  90. match_flag = 0;
  91. break;
  92. }
  93. }
  94. #else
  95. for (i = 0; i < 64; i++) {
  96. nor_id_value_check = test_delaychain_read_id(dev, try_delaychain);
  97. if (nor_id_value_check != chipid_ref) {
  98. printk("read:0x%x @ %d\n", nor_id_value_check, try_delaychain);
  99. match_flag = 0;
  100. break;
  101. }
  102. }
  103. #endif
  104. ret_delaychain[try_delaychain] = match_flag;
  105. }
  106. //test_delaychain_read_id(dev, CONFIG_SPI_FLASH_DELAY_CHAIN);
  107. irq_unlock(local_irq_save);
  108. return 0;
  109. }
  110. __ramfunc u32_t nor_read_chipid(const struct device *dev)
  111. {
  112. u32_t nor_id;
  113. u32_t local_irq_save;
  114. struct spinor_info *sni = (struct spinor_info *)(dev)->data;
  115. local_irq_save = irq_lock();
  116. nor_id = p_spinor_api->read_chipid(sni) & 0xffffff;
  117. irq_unlock(local_irq_save);
  118. return nor_id;
  119. }
  120. __ramfunc u8_t spinor_test_delaychain(const struct device *test_nor_dev)
  121. {
  122. u8_t ret_delaychain = 0;
  123. u8_t delaychain_flag[DELAY_CHAIN_NUM];
  124. u8_t delaychain_total[DELAY_CHAIN_NUM];
  125. u8_t start = 0, end, middle, i;
  126. u8_t expect_max_count_delay_chain = 0, max_count_delay_chain;
  127. //u32_t freq;
  128. u32_t chipid_ref;
  129. u8_t bak_delaytran;
  130. //struct device *test_nor_dev = device_get_binding(CONFIG_SPI_FLASH_NAME);
  131. struct spinor_info *sni = (struct spinor_info *)(test_nor_dev)->data;
  132. bak_delaytran = sni->spi.delay_chain;
  133. printk("spinor test delaychain start\n");
  134. chipid_ref = nor_read_chipid(test_nor_dev);
  135. printk("delaytran=0x%x, chipid = 0x%x\n", bak_delaytran, chipid_ref);
  136. memset(delaychain_total, 0x0, DELAY_CHAIN_NUM);
  137. //for (freq = 6; freq <= 222; freq += 6) {
  138. expect_max_count_delay_chain++;
  139. // soc_freq_set_cpu_clk(0, freq);
  140. // printk("set cpu freq : %d\n", freq);
  141. if (test_delaychain_try(test_nor_dev, delaychain_flag, chipid_ref) == 0) {
  142. for (i = 0; i < DELAY_CHAIN_NUM; i++)
  143. delaychain_total[i] += delaychain_flag[i];
  144. } else {
  145. printk("test_delaychain_try error!!\n");
  146. goto delay_chain_exit;
  147. }
  148. //}
  149. sni->spi.delay_chain = bak_delaytran;
  150. printk("delaychain_total : ");
  151. for (i = 0; i < DELAY_CHAIN_NUM; i++)
  152. printk("%d,", delaychain_total[i]);
  153. printk("\n");
  154. max_count_delay_chain = 0;
  155. for (i = 0; i < DELAY_CHAIN_NUM; i++) {
  156. if (delaychain_total[i] > max_count_delay_chain)
  157. max_count_delay_chain = delaychain_total[i];
  158. }
  159. for (i = 0; i < DELAY_CHAIN_NUM; i++) {
  160. if (delaychain_total[i] == max_count_delay_chain) {
  161. start = i;
  162. break;
  163. }
  164. }
  165. end = start;
  166. for (i = start + 1; i < DELAY_CHAIN_NUM; i++) {
  167. if (delaychain_total[i] != max_count_delay_chain)
  168. break;
  169. end = i;
  170. }
  171. if (max_count_delay_chain < expect_max_count_delay_chain) {
  172. printk("test delaychain max count is %d, less then expect %d!!\n",
  173. max_count_delay_chain, expect_max_count_delay_chain);
  174. goto delay_chain_exit;
  175. }
  176. if ((end - start + 1) < 3) {
  177. printk("test delaychain only %d ok!! too less!!\n", end - start + 1);
  178. goto delay_chain_exit;
  179. }
  180. middle = (start + end) / 2;
  181. printk("test delaychain pass, best delaychain is : %d\n\n", middle);
  182. ret_delaychain = middle;
  183. delay_chain_exit:
  184. return ret_delaychain;
  185. }
  186. /*
  187. leopard: vdd < 1000 spi clk 64MHZ else 93MHZ
  188. */
  189. #define NUM_VDD_ITEM 4
  190. const uint16_t g_vdd_volt[NUM_VDD_ITEM] = {1200, 1100, 1000, 950};
  191. //const uint16_t g_vdd_volt[NUM_VDD_ITEM] = {1000, 950};
  192. __ramfunc int nor_test_delaychain(const struct device *dev)
  193. {
  194. int i;
  195. uint16_t vdd;
  196. //printk_dma_switch(0);
  197. printk("-----nor_test_delaychain =0x%x----\n", sys_read32(SPI1_DELAYCHAIN));
  198. sys_write32((sys_read32(SPI1_DELAYCHAIN)&(~0xf))|0x06, SPI1_DELAYCHAIN);
  199. soc_freq_set_cpu_clk(70,70);
  200. sys_write32(0, WD_CTL);
  201. #if 1
  202. for(i = 0; i < NUM_VDD_ITEM; i++){
  203. if(g_vdd_volt[i] == 950){
  204. printk("set spi0/spi1 clk 0.95V\n");
  205. sys_write32((sys_read32(SPI1_DELAYCHAIN)&(~0xf))|0x03, SPI1_DELAYCHAIN);
  206. clk_set_rate(CLOCK_ID_SPI1, MHZ(70) * 2);
  207. clk_set_rate(CLOCK_ID_SPI0, MHZ(64));
  208. }
  209. soc_pmu_set_vdd_voltage(g_vdd_volt[i]);
  210. soc_udelay(1000);
  211. printk("-----%d vdd set %d mv, try delaytran----\n", i, g_vdd_volt[i]);
  212. printk("%d, vdd=%d mv, delaychain : %d\n", i, g_vdd_volt[i], spinor_test_delaychain(dev));
  213. }
  214. #endif
  215. #if defined(CONFIG_SPI_FLASH_GPIO_2CS) && (CONFIG_SPI_FLASH_GPIO_2CS == 1)
  216. for(i = NUM_VDD_ITEM-1; i >= 0; i--){
  217. vdd = g_vdd_volt[i];
  218. soc_pmu_set_vdd_voltage(vdd);
  219. soc_udelay(1000);
  220. if(g_vdd_volt[i] == 1000){
  221. printk("set spi0/spi1 clk 1.0V\n");
  222. sys_write32((sys_read32(SPI1_DELAYCHAIN)&(~0xf))|0x06, SPI1_DELAYCHAIN);
  223. clk_set_rate(CLOCK_ID_SPI1, MHZ(140) * 2);
  224. clk_set_rate(CLOCK_ID_SPI0, MHZ(100));
  225. }
  226. }
  227. printk("\n\n---------------try cs1 nor-----------------\n\n");
  228. TEST_ADDR = 0x200000+0x1000000;
  229. TEST_ADDR_END = 0x400000+0x1000000;
  230. nor_test_start= TEST_ADDR;
  231. for(i = 0; i < NUM_VDD_ITEM; i++){
  232. if(g_vdd_volt[i] == 950){
  233. printk("set spi0/spi1 clk 0.95V\n");
  234. sys_write32((sys_read32(SPI1_DELAYCHAIN)&(~0xf))|0x03, SPI1_DELAYCHAIN);
  235. clk_set_rate(CLOCK_ID_SPI1, MHZ(70) * 2);
  236. clk_set_rate(CLOCK_ID_SPI0, MHZ(64));
  237. }
  238. soc_udelay(1000);
  239. printk("--start cs1---%d vdd set %d mv, try delaytran----\n", i, g_vdd_volt[i]);
  240. printk("--end cs1 %d, vdd=%d mv, best delaychain : %d\n\n", i, g_vdd_volt[i], spinor_test_delaychain(dev));
  241. }
  242. #endif
  243. printk("\n ----nor_test_delaychain-- finshed-----\n");
  244. while(1);
  245. return 0;
  246. }