soc_pm.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. /*
  2. * Copyright (c) 2018 Actions Semiconductor Co., Ltd
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /**
  7. * @file system reboot interface for Actions SoC
  8. */
  9. #include <device.h>
  10. #include <init.h>
  11. #include <soc.h>
  12. #include <pm/pm.h>
  13. #include <drivers/rtc.h>
  14. #include <board_cfg.h>
  15. #include <linker/linker-defs.h>
  16. #if (CONFIG_PM_BACKUP_TIME_FUNCTION_EN == 1)
  17. #include <drivers/nvram_config.h>
  18. #endif
  19. #define REBOOT_REASON_MAGIC 0x4252 /* 'RB' */
  20. static bool g_b_boot_abnormal; /*ture: boot abnormal, false: boot ok*/
  21. int sys_pm_get_wakeup_source(union sys_pm_wakeup_src *src)
  22. {
  23. uint32_t wk_pd;
  24. if (!src)
  25. return -EINVAL;
  26. src->data = 0;
  27. wk_pd = soc_pmu_get_wakeup_source();
  28. if (wk_pd & BIT(0))
  29. src->t.long_onoff = 1;
  30. if (wk_pd & BIT(1))
  31. src->t.short_onoff = 1;
  32. if (wk_pd & BIT(13))
  33. src->t.bat = 1;
  34. if (wk_pd & BIT(5))
  35. src->t.wio = 1;
  36. if (wk_pd & BIT(12))
  37. src->t.remote = 1;
  38. if (wk_pd & BIT(4))
  39. src->t.alarm = 1;
  40. if (wk_pd & BIT(11))
  41. src->t.batlv = 1;
  42. if (wk_pd & BIT(10))
  43. src->t.dc5vlv = 1;
  44. if (wk_pd & BIT(2))
  45. src->t.dc5vin = 1;
  46. if(g_b_boot_abnormal){
  47. if (soc_boot_get_watchdog_is_reboot() == 1)
  48. src->t.watchdog = 1;
  49. else
  50. src->t.onoff_reset = 1;
  51. }
  52. return 0;
  53. }
  54. void sys_pm_set_wakeup_src(void)
  55. {
  56. uint32_t key, val;
  57. key = irq_lock();
  58. val = sys_read32(WKEN_CTL_SVCC) & (~0x1fff);
  59. val |= WAKE_CTL_LONG_WKEN | WAKE_CTL_ALARM8HZ_WKEN | WAKE_CTL_WIO0LV_DETEN;
  60. #ifdef CONFIG_ACTS_LEOPARD_BATTERY_SUPPLY_EXTERNAL
  61. val |= WAKE_CTL_WIO_WKEN;
  62. #endif
  63. if(!soc_pmu_get_dc5v_status()) {
  64. val |= WAKE_CTL_DC5VIN_WKEN;
  65. }
  66. sys_write32(val, WKEN_CTL_SVCC);
  67. k_busy_wait(500);
  68. irq_unlock(key);
  69. }
  70. #if (CONFIG_PM_BACKUP_TIME_FUNCTION_EN == 1)
  71. #include <drivers/alarm.h>
  72. void sys_pm_poweroff_backup_time(void)
  73. {
  74. int ret;
  75. uint32_t rc32k_freq;
  76. const struct device *rtc_dev = device_get_binding(CONFIG_RTC_0_NAME);
  77. struct sys_pm_backup_time pm_bak_time = {0};
  78. struct rtc_time rtc_time = {0};
  79. rc32k_freq = acts_clock_rc32k_set_cal_cyc(300);
  80. #if (CONFIG_RTC_CLK_SOURCE == 2) // rc32k , need calibration each hour
  81. #if IS_ENABLED(CONFIG_RTC_ENABLE_CALIBRATION)
  82. uint32_t b_cal = 0;
  83. soc_pstore_get(SOC_PSTORE_TAG_RTC_RC32K_CAL, &b_cal);
  84. //printk("rtc cal=%d\n", b_cal);
  85. if(b_cal) {
  86. const struct device *alarm_dev = device_get_binding(CONFIG_ALARM8HZ_0_NAME);
  87. struct alarm_status alarm_sta;
  88. uint32_t cycle, cycle_8hz, ms;
  89. uint32_t alram_ms = 1000*60*60; // 1h wakeup
  90. if(alarm_dev){
  91. acts_alarm_get_alarm(alarm_dev, &alarm_sta);
  92. printk("user alarm=%d\n", alarm_sta.is_on);
  93. if(alarm_sta.is_on){
  94. pm_bak_time.user_alarm_cycles = soc_pmu_get_alarm8hz();
  95. cycle_8hz = soc_pmu_get_counter8hz_cycles(false);
  96. if(pm_bak_time.user_alarm_cycles > cycle_8hz){
  97. cycle = pm_bak_time.user_alarm_cycles - cycle_8hz;
  98. }else{
  99. cycle = PMU_COUTNER8HZ_MAX - cycle_8hz + pm_bak_time.user_alarm_cycles;
  100. }
  101. printk("alarm_cnt=%d,8hz_cnt=%d, diff_cycle=%d\n", pm_bak_time.user_alarm_cycles, cycle_8hz, cycle);
  102. ms = (uint64_t)cycle*32768*125 /rc32k_freq; // cal real ms
  103. printk("user set alarm after %d ms\n", ms);
  104. pm_bak_time.is_user_alarm_on = 1;
  105. if(ms < alram_ms *2) { // It is multiplied by 2 because the user's alarm may be lost due to calculation error
  106. alram_ms = ms; // use user alarm
  107. pm_bak_time.is_user_cur_use = 1;
  108. }
  109. }
  110. }
  111. pm_bak_time.is_use_alarm_cal = 1;
  112. soc_pmu_alarm8hz_enable(alram_ms);
  113. printk("pwoer set alarm=%d ms\n", alram_ms);
  114. }
  115. #endif
  116. #endif
  117. ret = soc_pmu_get_counter8hz_cycles(true);
  118. if ((ret > 0) && rtc_dev) {
  119. pm_bak_time.counter8hz_cycles = ret;
  120. ret = rtc_get_time(rtc_dev, &rtc_time);
  121. if (!ret) {
  122. rtc_tm_to_time(&rtc_time, &pm_bak_time.rtc_time_sec);
  123. pm_bak_time.rtc_time_msec = rtc_time.tm_ms+5;
  124. pm_bak_time.is_backup_time_valid = 1;
  125. pm_bak_time.rc32k_freq = rc32k_freq;
  126. ret = nvram_config_set(CONFIG_PM_BACKUP_TIME_NVRAM_ITEM_NAME,
  127. &pm_bak_time, sizeof(struct sys_pm_backup_time));
  128. if (ret) {
  129. printk("failed to save pm backup time to nvram\n");
  130. } else {
  131. printk("power off current 8hz: %d, rc32k_freq=%d\n", pm_bak_time.counter8hz_cycles, rc32k_freq);
  132. print_rtc_time(&rtc_time);
  133. }
  134. }
  135. }
  136. }
  137. #endif
  138. /*
  139. ** system power off
  140. */
  141. void sys_pm_poweroff(void)
  142. {
  143. unsigned int key;
  144. /* wait 10ms, avoid trigger onoff wakeup pending */
  145. k_busy_wait(10000);
  146. #ifdef CONFIG_ACTIONS_PRINTK_DMA
  147. printk_dma_switch(0);
  148. #endif
  149. sys_pm_set_wakeup_src();
  150. printk("system power down!WKEN_CTL=0x%x\n", sys_read32(WKEN_CTL_SVCC));
  151. key = irq_lock();
  152. #if (CONFIG_PM_BACKUP_TIME_FUNCTION_EN == 1)
  153. sys_pm_poweroff_backup_time();
  154. #endif
  155. #ifdef CONFIG_PM_DEVICE
  156. printk("dev power off\n");
  157. pm_power_off_devices();
  158. printk("dev power end\n");
  159. #endif
  160. soc_pstore_set(SOC_PSTORE_TAG_HR_RESET, 0);/*poweroff set 0*/
  161. k_busy_wait(10);
  162. while(1) {
  163. sys_write32(0, POWER_CTL_SVCC);
  164. /* wait 10ms */
  165. k_busy_wait(10000);
  166. printk("poweroff fail, need reboot!\n");
  167. sys_pm_reboot(0);
  168. }
  169. /* never return... */
  170. }
  171. static shipmode_callback_t g_shipmode_func = NULL;
  172. static void *shipmode_arg;
  173. void sys_pm_shimode_register_callback(shipmode_callback_t func, void *arg)
  174. {
  175. g_shipmode_func = func;
  176. shipmode_arg = arg;
  177. }
  178. /*
  179. ** system enter to shipmode
  180. */
  181. void sys_pm_shipmode(void)
  182. {
  183. unsigned int key, val;
  184. #ifdef CONFIG_ACTIONS_PRINTK_DMA
  185. printk_dma_switch(0);
  186. #endif
  187. if(g_shipmode_func != NULL){ /*extern charger 2s close power */
  188. g_shipmode_func(shipmode_arg);
  189. }
  190. key = irq_lock();
  191. //printk("close internal charger...\n");
  192. sys_write32(sys_read32(CHG_CTL_SVCC) & ~(1<<10), CHG_CTL_SVCC);
  193. val = sys_read32(WKEN_CTL_SVCC) & (~0x1fff);
  194. val |= /*WAKE_CTL_LONG_WKEN |*/ WAKE_CTL_WIO_WKEN;
  195. sys_write32(val, WKEN_CTL_SVCC);
  196. k_busy_wait(500);
  197. printk("system shipmode WKEN_CTL=0x%x\n", sys_read32(WKEN_CTL_SVCC));
  198. #if (CONFIG_PM_BACKUP_TIME_FUNCTION_EN == 1)
  199. sys_pm_poweroff_backup_time();
  200. #endif
  201. #ifdef CONFIG_PM_DEVICE
  202. printk("dev power off\n");
  203. pm_power_off_devices();
  204. printk("dev power end\n");
  205. #endif
  206. soc_pstore_set(SOC_PSTORE_TAG_HR_RESET, 0);/*poweroff set 0*/
  207. k_busy_wait(10);
  208. while(1) {
  209. sys_write32(0, POWER_CTL_SVCC);
  210. /* wait 10ms */
  211. k_busy_wait(10000);
  212. printk("shipmode fail, need reboot!\n");
  213. sys_pm_reboot(0);
  214. }
  215. /* never return... */
  216. }
  217. /*
  218. CONFIG_WAKEUP_LONG_PRESS_TIME
  219. */
  220. /*
  221. * The time threshold in millisecond to estimate the on-off key press is a long time pressed.
  222. * - 0: 0.125s is a long pressed key.
  223. * - 1: 0.25s is a long pressed key.
  224. * - 2: 0.5s is a long pressed key.
  225. * - 3: 1s is a long pressed key.
  226. * - 4: 1.5s is a long pressed key.
  227. * - 5: 2s is a long pressed key.
  228. * - 6: 3s is a long pressed key.
  229. * - 7: 4s is a long pressed key.
  230. */
  231. #define CONFIG_WAKEUP_LONG_PRESS_TIME (6)
  232. static void __sys_pm_factory_poweroff(int rtc_bak)
  233. {
  234. unsigned int key, val;
  235. /* wait 10ms, avoid trigger onoff wakeup pending */
  236. k_busy_wait(10000);
  237. #ifdef CONFIG_ACTIONS_PRINTK_DMA
  238. printk_dma_switch(0);
  239. #endif
  240. key = irq_lock();
  241. val = sys_read32(WKEN_CTL_SVCC) & (~0x1fff);
  242. val |= WAKE_CTL_LONG_WKEN | WAKE_CTL_WIO0LV_DETEN;
  243. if(!soc_pmu_get_dc5v_status()) {
  244. val |= WAKE_CTL_DC5VIN_WKEN;
  245. }
  246. sys_write32(val, WKEN_CTL_SVCC);
  247. k_busy_wait(500);
  248. soc_pmu_config_onoffkey_time(CONFIG_WAKEUP_LONG_PRESS_TIME);
  249. printk("factory power down WKEN_CTL=0x%x\n", sys_read32(WKEN_CTL_SVCC));
  250. if(rtc_bak) {
  251. #if (CONFIG_PM_BACKUP_TIME_FUNCTION_EN == 1)
  252. sys_pm_poweroff_backup_time();
  253. #endif
  254. }
  255. #ifdef CONFIG_PM_DEVICE
  256. printk("dev power off\n");
  257. pm_power_off_devices();
  258. printk("dev power end\n");
  259. #endif
  260. soc_pstore_set(SOC_PSTORE_TAG_HR_RESET, 0);/*poweroff set 0*/
  261. k_busy_wait(10);
  262. while(1) {
  263. sys_write32(0, POWER_CTL_SVCC);
  264. /* wait 10ms */
  265. k_busy_wait(10000);
  266. printk("poweroff fail, need reboot!\n");
  267. sys_pm_reboot(0);
  268. }
  269. /* never return... */
  270. }
  271. void sys_pm_factory_poweroff(void)
  272. {
  273. __sys_pm_factory_poweroff(1);
  274. }
  275. void sys_pm_reboot(int type)
  276. {
  277. unsigned int key;
  278. #ifdef CONFIG_ACTIONS_PRINTK_DMA
  279. printk_dma_switch(0);
  280. #endif
  281. if(type == REBOOT_TYPE_GOTO_SWJTAG){
  282. printk("set jtag flag\n");
  283. type = REBOOT_TYPE_NORMAL;
  284. sys_set_bit(RTC_REMAIN2, 0); //bit 0 adfu flag
  285. }
  286. printk("system reboot, type 0x%x!\n", type);
  287. key = irq_lock();
  288. #ifdef CONFIG_PM_DEVICE
  289. printk("dev power off\n");
  290. pm_power_off_devices();
  291. printk("dev power end\n");
  292. #endif
  293. soc_pstore_set(SOC_PSTORE_TAG_HR_RESET, 0);/*poweroff set 0*/
  294. /* store reboot reason in RTC_REMAIN0 for bootloader */
  295. sys_write32((REBOOT_REASON_MAGIC << 16) | (type & 0xffff), RTC_REMAIN3);
  296. k_busy_wait(500);
  297. sys_write32(0x5f, WD_CTL);
  298. while (1) {
  299. ;
  300. }
  301. /* never return... */
  302. }
  303. int sys_pm_get_reboot_reason(u16_t *reboot_type, u8_t *reason)
  304. {
  305. uint32_t reg_val;
  306. reg_val = soc_boot_get_reboot_reason();
  307. if ((reg_val >> 16) != REBOOT_REASON_MAGIC) {
  308. return -1;
  309. }
  310. *reboot_type = reg_val & 0xff00;
  311. *reason = reg_val & 0xff;
  312. return 0;
  313. }
  314. __sleepfunc void soc_udelay(uint32_t us)
  315. {
  316. volatile uint32_t cycles_per_1us, wait_cycles;
  317. volatile uint32_t i;
  318. uint32_t cmu_sysclk = sys_read32(CMU_SYSCLK);
  319. uint8_t cpuclk_src = cmu_sysclk & 0x7;
  320. uint8_t cpuclk_div = (cmu_sysclk & 0xf0) >> 4;
  321. uint16_t div_x10;
  322. if (cpuclk_div >= 14)
  323. /* Do not use float. Each float operation will cost more than 47us. */
  324. div_x10 = 10 * cpuclk_div - 125;
  325. else
  326. div_x10 = 10 * (cpuclk_div + 1);
  327. if (cpuclk_src == 0) {
  328. cycles_per_1us = (uint32_t)(40 / div_x10);
  329. }
  330. else if (cpuclk_src == 1) {
  331. cycles_per_1us = (uint32_t)(320 / div_x10);
  332. }
  333. else if (cpuclk_src == 2) {
  334. cycles_per_1us = (uint32_t)(((sys_read32(COREPLL_CTL) & 0x3f) * 80) / div_x10);
  335. }
  336. else if (cpuclk_src == 3) {
  337. cycles_per_1us = (uint32_t)(640 / div_x10);
  338. }
  339. else if (cpuclk_src == 5) {
  340. cycles_per_1us = (uint32_t)(1920 / div_x10);
  341. }
  342. else
  343. cycles_per_1us = 0;
  344. /* 20% udelay margin */
  345. wait_cycles = cycles_per_1us * us / 10 + 1;
  346. for (i = 0; i < wait_cycles; i++) { /* totally 12 instruction cycles */
  347. ;
  348. }
  349. }
  350. static void __config_cpu_pwrgat_reg(bool is_pwrgat)
  351. {
  352. if (is_pwrgat) {
  353. /* MAINCPU_PG/RAM0_MAIN_FORCE/SHARERAM_FORCE/RAM_FASTWAKE=0, RAM_AUTOSLEEP=1 */
  354. sys_write32((sys_read32(PWRGATE_DIG) & 0x3ebfffff) | 0x00800000, PWRGATE_DIG);
  355. /* SHARERAM_DS/RAM0_DS=1 */
  356. sys_write32(sys_read32(RAM_DEEPSLEEP) | 0x00020001, RAM_DEEPSLEEP);
  357. } else {
  358. /* RAM0_MAIN_FORCE/SHARERAM_FORCE/RAM_FASTWAKE=0, RAM_AUTOSLEEP=1 */
  359. sys_write32((sys_read32(PWRGATE_DIG) & 0xbebfffff) | 0x00800000, PWRGATE_DIG);
  360. /* SHARERAM_DS=1 */
  361. sys_write32(sys_read32(RAM_DEEPSLEEP) | 0x00020000, RAM_DEEPSLEEP);
  362. }
  363. }
  364. void __psram_reg_write(unsigned int reg_addr, unsigned int reg_data);
  365. static void soc_calib_rc64m (void)
  366. {
  367. uint32_t tmp;
  368. sys_write32(0x7, CMU_S1CLKCTL);
  369. sys_write32(0x7, CMU_S1BTCLKCTL);
  370. sys_write32(0x80201400, CK64M_CTL);
  371. soc_udelay(20);
  372. sys_write32(0x8020140c, CK64M_CTL);
  373. soc_udelay(20);
  374. while(!(sys_read32(CK64M_CTL) & (1<<24))); //caldone and write back
  375. /* software debounce in calibdone signal */
  376. repeat:
  377. for(int i = 0; i < 3; i++) {
  378. soc_udelay(20);
  379. tmp = (sys_read32(CK64M_CTL) & (1<<24));
  380. if(!tmp) {
  381. goto repeat;
  382. }
  383. }
  384. tmp = (sys_read32(CK64M_CTL) & (0x7f<<25))>>25;
  385. tmp -= 1;
  386. sys_write32((0x80201000 | (tmp<<4)), CK64M_CTL);
  387. soc_udelay(20);
  388. }
  389. static int soc_pm_init(const struct device *arg)
  390. {
  391. unsigned int val = 0;
  392. soc_pstore_get(SOC_PSTORE_TAG_HR_RESET,&val);
  393. if(val){
  394. g_b_boot_abnormal = true;
  395. }else{
  396. g_b_boot_abnormal = false; /*boot normal*/
  397. soc_pstore_set(SOC_PSTORE_TAG_HR_RESET, 1);/*boot set 1, poweroff set 0*/
  398. }
  399. printk("WAKE_PD_SVCC=0x%x,wdt=%d, b_err=%d\n", sys_read32(WAKE_PD_SVCC), soc_boot_get_watchdog_is_reboot(), val);
  400. soc_calib_rc64m();
  401. sys_write32(0x3, CMU_S1CLKCTL); // hosc+rc4m
  402. sys_write32(0x3, CMU_S1BTCLKCTL); // hosc+rc4m
  403. sys_write32(0x1, CMU_S2SCLKCTL); // RC4M enable
  404. sys_write32(0x9, CMU_S3CLKCTL); // S3 colse hosc and RC4M, enable RAM4 CLK SPIMT ICMT CLK ENABLE
  405. //sys_write32(0x0, CMU_PMUWKUPCLKCTL); //select wk clk RC32K, if sel RC4M/4 ,must enable RC4M IN sleep
  406. sys_write32(0x1, CMU_PMUWKUPCLKCTL);
  407. sys_write32(0x1, CMU_GPIOCLKCTL); //select gpio clk RC4M
  408. sys_write32(0x58, RC4M_CTL); // choose SVCC as the voltage domain of RC4M
  409. //sys_write32(0x06e04253, VOUT_CTL1_S3); // vdd=0.70V, vd12=0.70V
  410. sys_write32(0x07e04253, VOUT_CTL1_S3); // vdd=0.7V, vd12=0.7V
  411. //sys_write32(0x1, CMU_MEMCLKEN0); //select gpio clk RC4M
  412. printk("CMU_MEMCLKSRC0=0x%x\n", sys_read32(CMU_MEMCLKSRC0));
  413. printk("CMU_MEMCLKSRC1=0x%x\n", sys_read32(CMU_MEMCLKSRC1));
  414. printk("CMU_MEMCLKEN0=0x%x\n", sys_read32(CMU_MEMCLKEN0));
  415. printk("CMU_MEMCLKEN1=0x%x\n", sys_read32(CMU_MEMCLKEN1));
  416. printk("CMU_DSPCLK=0x%x\n", sys_read32(CMU_DSPCLK));
  417. sys_write32((sys_read32(SPI1_CACHE_CTL) & ~(0x3 << 5)) | (1 << 5), SPI1_CACHE_CTL);
  418. sys_write32((sys_read32(VOUT_CTL1_S1) & ~(0xF << 8)) | (0xC << 8), VOUT_CTL1_S1); // VD12_S1BT=1.2V
  419. sys_write32((sys_read32(VOUT_CTL1_S1) & ~(0xF << 0)) | (0x6 << 0), VOUT_CTL1_S1); // VDD_S1BT=0.85V
  420. #ifdef CONFIG_CPU_PWRGAT
  421. if (soc_dvfs_opt()) {
  422. __config_cpu_pwrgat_reg(true);
  423. }
  424. else {
  425. __config_cpu_pwrgat_reg(false);
  426. }
  427. #else
  428. __config_cpu_pwrgat_reg(false);
  429. #endif
  430. #if 0
  431. if (0/*soc_dvfs_opt()*/) {
  432. sys_write32(0x06a02053, VOUT_CTL1_S3);//VDD=0.7, vdd1.2=0.7
  433. /* s1 vdd set as 1.1v */
  434. sys_write32((sys_read32(VOUT_CTL1_S1) & ~(0xF << 0)) | 0xb, VOUT_CTL1_S1);
  435. if(soc_boot_is_mini()){
  436. psram_delay_chain_set(0x8, 0x6);
  437. }else{
  438. /* set psram delay chain in 1.1v */
  439. psram_delay_chain_set(0x9, 0x7);
  440. __psram_reg_write(0, 0xa);
  441. }
  442. /* vd12 set as 1.2v */
  443. sys_write32((sys_read32(VOUT_CTL1_S1) & ~(0xff << 8)) | (0xa << 8) | (0xa << 12), VOUT_CTL1_S1);
  444. } else {
  445. sys_write32(0x06202053, VOUT_CTL1_S3);//VDD=0.7, vdd1.2=0.7
  446. /* s1 vdd set as 1.1v */
  447. sys_write32((sys_read32(VOUT_CTL1_S1) & ~(0xF << 0)) | 0xb, VOUT_CTL1_S1);
  448. /* set psram delay chain in 1.1v */
  449. // psram_delay_chain_set(0x3, 0x6);
  450. }
  451. sys_write32(0x06202255, VOUT_CTL1_S2);//VDD=0.8, vdd1.2=0.8
  452. sys_write32(0x5958, RC4M_CTL);
  453. sys_write32(sys_read32(BDG_CTL_SVCC) & ~(1 << 20), BDG_CTL_SVCC);
  454. /* disable DSPs power gating */
  455. sys_write32(sys_read32(PWRGATE_DIG) & ~(0x3 << 25), PWRGATE_DIG);
  456. /* spi1 cache enable low power mode;
  457. * TOTO: move to boot
  458. */
  459. sys_write32((sys_read32(SPI1_CACHE_CTL) & ~(0x3 << 5)) | (1 << 5), SPI1_CACHE_CTL);
  460. #endif
  461. return 0;
  462. }
  463. SYS_INIT(soc_pm_init, PRE_KERNEL_1, 20);
  464. #ifndef CONFIG_SOC_WKEN_BAT
  465. #include <drivers/adc.h>
  466. #include <sys/byteorder.h>
  467. #define DC5V_CH 2
  468. #define BAT_CH 1
  469. static int dc5v_bat_get_mv(int ch)
  470. {
  471. int ret;
  472. struct adc_sequence seq;
  473. uint8_t adc_buf[4];
  474. uint32_t adc_val, mv;
  475. const struct device *adc_dev;
  476. struct adc_channel_cfg ch_cfg = {0};
  477. adc_dev = device_get_binding(CONFIG_PMUADC_NAME);
  478. if (adc_dev == NULL) {
  479. printk("ADC device not found\n");
  480. return -ENODEV;
  481. }
  482. ch_cfg.channel_id = ch;
  483. adc_channel_setup(adc_dev, &ch_cfg);
  484. seq.channels = BIT(ch); //DC5V
  485. seq.buffer = &adc_buf[0];
  486. seq.buffer_size = sizeof(adc_buf);
  487. ret = adc_read(adc_dev, &seq);
  488. if(ret < 0){
  489. printk("adc read fail\n");
  490. return -EINVAL;
  491. }
  492. adc_val = sys_get_le16(seq.buffer);
  493. if(DC5V_CH == ch)
  494. mv = (adc_val + 1) * 6000 / 4096; // (adc_val + 1) * 1465 / 1000; ///1 = 1.465mv
  495. else
  496. mv = adc_val * 300 / 1024; ///1 = 1.170mv ,bit0-1 is 0
  497. printk("ch%d: adc=%d, mv=%d\n",ch, adc_val, mv);
  498. return mv;
  499. }
  500. /*battery insert, system poweroff */
  501. static int bat_poweron_init(const struct device *arg)
  502. {
  503. unsigned int wctl;
  504. int dc5mv, batmv;
  505. wctl = sys_read32(WKEN_CTL_SVCC);
  506. if(!(wctl & (3<<30))){// check first boot
  507. sys_write32(wctl | (3<<30) , WKEN_CTL_SVCC); /*first boot, set flag, for check battery first insert*/
  508. #ifdef CONFIG_ACTS_LEOPARD_BATTERY_SUPPLY_EXTERNAL /*ext charger and power path management must define*/
  509. dc5mv = dc5v_bat_get_mv(DC5V_CH);
  510. batmv = dc5v_bat_get_mv(BAT_CH);
  511. if((dc5mv > 0) && ( batmv > 0) && (batmv < dc5mv + 100)){
  512. printk("powerpath, battery first insert, poweroff\n");
  513. __sys_pm_factory_poweroff(0);
  514. }
  515. #else
  516. unsigned int chg_ctl_bak;
  517. chg_ctl_bak = sys_read32(CHG_CTL_SVCC);
  518. sys_write32(chg_ctl_bak | BIT(19), CHG_CTL_SVCC);// SWITCH CV_3.3
  519. k_busy_wait(300);
  520. dc5mv = dc5v_bat_get_mv(DC5V_CH);
  521. batmv = dc5v_bat_get_mv(BAT_CH);
  522. sys_write32(chg_ctl_bak, CHG_CTL_SVCC); //recovery
  523. k_busy_wait(300);
  524. if((dc5mv > 0) && ( batmv > 0) && (dc5mv < batmv + 100)){
  525. printk("int battery first insert, poweroff\n");
  526. __sys_pm_factory_poweroff(0);
  527. }
  528. #endif
  529. }
  530. return 0;
  531. }
  532. SYS_INIT(bat_poweron_init, APPLICATION, 99);
  533. #endif