soc_psram.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /*
  2. * Copyright (c) 2021 Actions Semiconductor Co., Ltd
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /**
  7. * @file
  8. * @brief Actions PSRAM Implementation.
  9. */
  10. #include <kernel.h>
  11. #include <device.h>
  12. #include <zephyr.h>
  13. #include <soc.h>
  14. #include <linker/linker-defs.h>
  15. #include <dvfs.h>
  16. #define SPI1_DDR_ADDR0 (SPI1_CTL + 0x2C)
  17. #define SPI1_DDR_ADDR1 (SPI1_CTL + 0x30)
  18. #define SPI1_DDR_TRXLEN (SPI1_CTL + 0x34)
  19. #define SPI1_DDR_CMD (SPI1_CTL + 0x20)
  20. #define SPI1_DDR_START (SPI1_CTL + 0x24)
  21. #define SPI1_TXDAT (SPI1_CTL + 0x08)
  22. #define SPI1_DDR_STATUS (SPI1_CTL + 0x28)
  23. #define SPI1_STA (SPI1_CTL + 0x04)
  24. #define SPI1_RXDAT (SPI1_CTL + 0x0C)
  25. #define PSRAM_CS_PIN (40)
  26. #ifndef CONFIG_SOC_NO_PSRAM
  27. __sleepfunc void __psram_reg_write(unsigned int reg_addr, unsigned int reg_data)
  28. {
  29. uint32_t ctl, mctl;
  30. ctl = sys_read32(SPI1_CTL);
  31. mctl = sys_read32(SPI1_DDR_MODE_CTL);
  32. /* switch to normal */
  33. sys_write32(sys_read32(SPI1_CTL) | (1 << 15), SPI1_CTL);
  34. /* wait ready */
  35. while ((sys_read32(SPI1_STA) & 0x2) != 2) {
  36. ;
  37. }
  38. /* use CPU clock, 8Bit FIFO mode */
  39. sys_write32(sys_read32(SPI1_CTL) & ~(3 << 30), SPI1_CTL);
  40. /* spi1 tx/rx fifo reset */
  41. sys_write32(sys_read32(SPI1_CTL) & ~(3 << 4), SPI1_CTL);
  42. sys_write32(sys_read32(SPI1_CTL) | (3 << 4), SPI1_CTL);
  43. if(soc_boot_is_mini()){
  44. if(soc_psram_is_apm()){
  45. }else{
  46. sys_write32((0<<20)|(6<<16)|(5<<12)|(4<<8)|(4<<4)|(4<<0), SPI1_DDR_MODE_CTL); //DDR OPI OKmode
  47. sys_write32(0x600001, SPI1_DDR_ADDR1);
  48. }
  49. }else{
  50. /* DDR OPI OKmode */
  51. sys_write32((0 << 20) | (5 << 16) | (1 << 0), SPI1_DDR_MODE_CTL);
  52. }
  53. /* psram register address */
  54. sys_write32(reg_addr, SPI1_DDR_ADDR0);
  55. sys_write32(2, SPI1_DDR_TRXLEN);
  56. /* write command is 0xC0 */
  57. sys_write32(0xC0, SPI1_DDR_CMD);
  58. /* TX transmit start */
  59. sys_write32(0x02, SPI1_DDR_START);
  60. if(soc_boot_is_mini()){
  61. if(soc_psram_is_apm()){
  62. sys_write32(reg_data, SPI1_TXDAT);
  63. sys_write32(0, SPI1_TXDAT); /* must send two bytes */
  64. }else{
  65. sys_write32(reg_data>>8, SPI1_TXDAT);
  66. sys_write32(reg_data&0xff, SPI1_TXDAT); /* must send two bytes */
  67. }
  68. }else{
  69. sys_write32(reg_data, SPI1_TXDAT);
  70. sys_write32(0, SPI1_TXDAT); /* must send two bytes */
  71. }
  72. soc_udelay(1);/*Must delay to resolve sleep&wakeup panic*/
  73. /* wait transmit complete */
  74. while ((sys_read32(SPI1_DDR_STATUS) & 0x1) != 1);
  75. /* clear status bit */
  76. sys_write32(0x01, SPI1_DDR_STATUS);
  77. sys_write32(0x00, SPI1_DDR_START);
  78. sys_write32(ctl, SPI1_CTL);
  79. sys_write32(mctl, SPI1_DDR_MODE_CTL);
  80. }
  81. __sleepfunc unsigned int __psram_reg_read(unsigned int reg_addr)
  82. {
  83. uint32_t ctl, mctl, reg_data;
  84. ctl = sys_read32(SPI1_CTL);
  85. mctl = sys_read32(SPI1_DDR_MODE_CTL);
  86. /* switch to normal */
  87. sys_write32(sys_read32(SPI1_CTL) | (1 << 15), SPI1_CTL);
  88. /* wait ready */
  89. while ((sys_read32(SPI1_STA) & 0x2) != 2) {
  90. ;
  91. }
  92. /* use CPU clock, 8Bit FIFO mode */
  93. sys_write32(sys_read32(SPI1_CTL) & ~(3 << 30), SPI1_CTL);
  94. /* spi1 tx/rx fifo reset */
  95. sys_write32(sys_read32(SPI1_CTL) & ~(3 << 4), SPI1_CTL);
  96. sys_write32(sys_read32(SPI1_CTL) | (3 << 4), SPI1_CTL);
  97. if(soc_boot_is_mini()){
  98. if(soc_psram_is_apm()){
  99. }else{
  100. sys_write32((0<<20)|(6<<16)|(5<<12)|(4<<8)|(4<<4)|(4<<0), SPI1_DDR_MODE_CTL);//DDR OPI OKmode
  101. sys_write32(0xe00001, SPI1_DDR_ADDR1);
  102. }
  103. }else{
  104. /* DDR OPI OKmode */
  105. sys_write32((0 << 20) | (5 << 16) | (1 << 0), SPI1_DDR_MODE_CTL);
  106. }
  107. /* psram register address */
  108. sys_write32(reg_addr, SPI1_DDR_ADDR0);
  109. sys_write32(2, SPI1_DDR_TRXLEN);
  110. /* read command */
  111. sys_write32(0x40, SPI1_DDR_CMD);
  112. /* RX transmit start */
  113. sys_write32(0x01, SPI1_DDR_START);
  114. while((sys_read32(SPI1_STA) & 0x40) == 0x40) {}; // wait for rx fifo not empty
  115. while((sys_read32(SPI1_DDR_STATUS) & 0x1) != 1) {}; //wait transmit complete
  116. /* clear status bit */
  117. sys_write32(0x01, SPI1_DDR_STATUS);
  118. sys_write32(0x00, SPI1_DDR_START);
  119. if(soc_boot_is_mini()) {
  120. if(soc_psram_is_apm()){
  121. reg_data = sys_read32(SPI1_RXDAT);
  122. }else{
  123. reg_data = sys_read32(SPI1_RXDAT);
  124. reg_data = reg_data << 8;
  125. reg_data |= sys_read32(SPI1_RXDAT);
  126. }
  127. }else {
  128. reg_data = sys_read32(SPI1_RXDAT);
  129. }
  130. sys_write32(ctl, SPI1_CTL);
  131. sys_write32(mctl, SPI1_DDR_MODE_CTL);
  132. return reg_data;
  133. }
  134. __sleepfunc void psram_self_refresh_control(bool low_refresh_en)
  135. {
  136. uint32_t reg_data;
  137. if(soc_boot_is_mini()){
  138. if(!soc_psram_is_apm())
  139. return;
  140. }
  141. reg_data = __psram_reg_read(4);
  142. if (low_refresh_en) {
  143. /* need follow origin PSRAM write latency bit[7:5], otherwise wkup panic */
  144. reg_data = (reg_data & ~(0x3 << 3)) | (0x1 << 3); /* 0.5x refresh */
  145. } else {
  146. reg_data = reg_data & ~(0x3 << 3); /* 1x refresh */
  147. }
  148. __psram_reg_write(4, reg_data);
  149. }
  150. __sleepfunc void psram_power_control(bool low_power_en)
  151. {
  152. volatile int loop;
  153. uint32_t pinctl_cs_bak;
  154. if (low_power_en) {
  155. if(soc_boot_is_mini()){
  156. if(soc_psram_is_apm()) {
  157. __psram_reg_write(6, 0xf0); //apm
  158. }else{
  159. __psram_reg_write(1, 0x20); //Hybrid Sleep
  160. }
  161. }else{
  162. __psram_reg_write(6, 0xf0);
  163. }
  164. } else {
  165. /* backup psram cs function pin ctl */
  166. pinctl_cs_bak = sys_read32(GPIO_REG_BASE + PSRAM_CS_PIN * 4);
  167. /* spi1 cs low to exit deep power mode */
  168. sys_write32(1 << 8, GPIO_REG_BASE + GPIO_BRR0 + 4);
  169. /* gpio40 cs low */
  170. sys_write32(0x3840, GPIO_REG_BASE + PSRAM_CS_PIN * 4);
  171. /* 60ns keep cs low */
  172. loop = 30;
  173. while(loop)loop--;
  174. /* spi1 cs high exit deep power mode */
  175. sys_write32(1 << 8, GPIO_REG_BASE + GPIO_BSR0 + 4);
  176. /* mini is 70us keep cs high else 150us */
  177. soc_udelay(150);
  178. /* psram gpio40 cs recovery */
  179. sys_write32(pinctl_cs_bak, GPIO_REG_BASE + PSRAM_CS_PIN * 4);
  180. }
  181. }
  182. __sleepfunc void psram_delay_chain_set(uint8_t dqs, uint8_t dqs1, uint8_t clkout)
  183. {
  184. sys_write32((sys_read32(SPI1_DELAYCHAIN) & ~(0x3f << 0) & ~(0x3f << 8)) \
  185. | (dqs << 0) \
  186. | (clkout << 8), SPI1_DELAYCHAIN);
  187. sys_write32((sys_read32(SPI1_DQS1_DELAYCHAIN) & ~(0x3f << 0)) \
  188. | (dqs1 << 0), SPI1_DQS1_DELAYCHAIN);
  189. soc_udelay(1);
  190. }
  191. #ifdef CONFIG_ACTS_DVFS_DYNAMIC_LEVEL
  192. struct psram_delaychain_tbl {
  193. uint16_t vdd_volt;
  194. uint8_t clkout;
  195. uint8_t dqs;
  196. uint8_t dqs1;
  197. };
  198. static const struct psram_delaychain_tbl psram_delaychain_tbl0[] = {
  199. {950, SPI1_DELAYCHAIN_CLKOUT, 6, 6},
  200. {1000, SPI1_DELAYCHAIN_CLKOUT, 6, 6},
  201. {1100, SPI1_DELAYCHAIN_CLKOUT, 10, 10},
  202. {1150, SPI1_DELAYCHAIN_CLKOUT, 10, 10},
  203. {1200, SPI1_DELAYCHAIN_CLKOUT, 10, 10},
  204. };
  205. static const struct psram_delaychain_tbl psram_delaychain_tbl1[] = {
  206. {950, SPI1_DELAYCHAIN_CLKOUT, 3, 4},
  207. {1000, SPI1_DELAYCHAIN_CLKOUT, 3, 4},
  208. {1100, SPI1_DELAYCHAIN_CLKOUT, 3, 4},
  209. {1150, SPI1_DELAYCHAIN_CLKOUT, 3, 4},
  210. {1200, SPI1_DELAYCHAIN_CLKOUT, 3, 4},
  211. };
  212. static const struct psram_delaychain_tbl psram_delaychain_tbl_mini[] = {
  213. {950, SPI1_DELAYCHAIN_CLKOUT, 3, 3},
  214. {1000, SPI1_DELAYCHAIN_CLKOUT, 4, 4},
  215. {1100, SPI1_DELAYCHAIN_CLKOUT, 5, 5},
  216. {1150, SPI1_DELAYCHAIN_CLKOUT, 6, 6},
  217. {1200, SPI1_DELAYCHAIN_CLKOUT, 6, 6},
  218. };
  219. static inline void psram_set_delaychain_by_vdd(uint16_t vdd)
  220. {
  221. uint8_t i, len;
  222. const struct psram_delaychain_tbl *tbl;
  223. if(soc_boot_is_mini()){
  224. if(soc_psram_is_apm()){
  225. tbl = psram_delaychain_tbl1;
  226. len = ARRAY_SIZE(psram_delaychain_tbl1);
  227. }else{
  228. tbl = psram_delaychain_tbl_mini;
  229. len = ARRAY_SIZE(psram_delaychain_tbl_mini);
  230. }
  231. }else {
  232. if (soc_dvfs_opt()) {
  233. tbl = psram_delaychain_tbl1;
  234. len = ARRAY_SIZE(psram_delaychain_tbl1);
  235. } else {
  236. tbl = psram_delaychain_tbl0;
  237. len = ARRAY_SIZE(psram_delaychain_tbl0);
  238. }
  239. }
  240. for (i = 0; i < len; i++) {
  241. if (tbl[i].vdd_volt == vdd) {
  242. psram_delay_chain_set(tbl[i].dqs, tbl[i].dqs1,tbl[i].clkout);
  243. break;
  244. }
  245. }
  246. }
  247. __dvfs_notifier_func static void psram_dvfs_notify(void *user_data, struct dvfs_freqs *dvfs_freq)
  248. {
  249. struct dvfs_level *old_dvfs_level, *new_dvfs_level;
  250. uint32_t key;
  251. ARG_UNUSED(user_data);
  252. if (!dvfs_freq) {
  253. printk("dvfs notify invalid param");
  254. return ;
  255. }
  256. if (dvfs_freq->old_level == dvfs_freq->new_level)
  257. return ;
  258. old_dvfs_level = dvfs_get_info_by_level_id(dvfs_freq->old_level);
  259. new_dvfs_level = dvfs_get_info_by_level_id(dvfs_freq->new_level);
  260. if (old_dvfs_level->vdd_volt == new_dvfs_level->vdd_volt) {
  261. return;
  262. }
  263. key = irq_lock();
  264. if (old_dvfs_level->vdd_volt > new_dvfs_level->vdd_volt) {
  265. /* vdd voltage decrease */
  266. if (dvfs_freq->state == DVFS_EVENT_PRE_CHANGE) {
  267. //spi1 clock may div/2 for psram, so we set psram clock * 2
  268. if (new_dvfs_level->vdd_volt < 1000){
  269. clk_set_rate(CLOCK_ID_SPI1, MHZ(70) * 2);
  270. } else if (new_dvfs_level->vdd_volt < 1200){
  271. clk_set_rate(CLOCK_ID_SPI1, MHZ(93)*2);
  272. }else {
  273. clk_set_rate(CLOCK_ID_SPI1, MHZ(140) * 2);
  274. }
  275. psram_set_delaychain_by_vdd(new_dvfs_level->vdd_volt);
  276. printk("psram delaychain update by vdd:%d => %d\n",
  277. old_dvfs_level->vdd_volt, new_dvfs_level->vdd_volt);
  278. }
  279. } else {
  280. /* vdd voltage increase */
  281. if (dvfs_freq->state == DVFS_EVENT_POST_CHANGE) {
  282. psram_set_delaychain_by_vdd(new_dvfs_level->vdd_volt);
  283. //spi1 clock may div/2 for psram, so we set psram clock * 2
  284. if (new_dvfs_level->vdd_volt < 1000){
  285. clk_set_rate(CLOCK_ID_SPI1, MHZ(70) * 2);
  286. } else if (new_dvfs_level->vdd_volt < 1200){
  287. clk_set_rate(CLOCK_ID_SPI1, MHZ(93)*2);
  288. } else {
  289. clk_set_rate(CLOCK_ID_SPI1, MHZ(140) * 2);
  290. }
  291. printk("psram delaychain update by vdd:%d => %d\n",
  292. old_dvfs_level->vdd_volt, new_dvfs_level->vdd_volt);
  293. }
  294. }
  295. irq_unlock(key);
  296. }
  297. static struct dvfs_notifier __dvfs_notifier_data psram_dvsf_notifier = {
  298. .dvfs_notify_func_t = psram_dvfs_notify,
  299. };
  300. static int soc_psram_init(const struct device *dev)
  301. {
  302. ARG_UNUSED(dev);
  303. dvfs_register_notifier(&psram_dvsf_notifier);
  304. return 0;
  305. }
  306. SYS_INIT(soc_psram_init, PRE_KERNEL_1, 21);
  307. #endif /* CONFIG_ACTS_DVFS_DYNAMIC_LEVEL */
  308. #else // no psram
  309. __sleepfunc void __psram_reg_write(unsigned int reg_addr, unsigned int reg_data)
  310. {
  311. }
  312. __sleepfunc void psram_self_refresh_control(bool low_refresh_en)
  313. {
  314. }
  315. __sleepfunc void psram_power_control(bool low_power_en)
  316. {
  317. if(!low_power_en)
  318. soc_udelay(150);
  319. }
  320. __sleepfunc void psram_delay_chain_set(uint8_t dqs, uint8_t dqs1, uint8_t clkout)
  321. {
  322. }
  323. #endif // #ifndef CONFIG_SOC_NO_PSRAM