sgm832a_acts.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. /*
  2. * Copyright (c) 2024 Wingcool Technology Co., Ltd
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /**
  7. * @file
  8. * @brief SGM832A Timer driver for Actions SoC
  9. */
  10. #include <errno.h>
  11. #include <kernel.h>
  12. #include <string.h>
  13. //#include <stdbool.h>
  14. #include <init.h>
  15. #include <irq.h>
  16. #include <drivers/adc.h>
  17. #include <drivers/input/input_dev.h>
  18. #include <sys/util.h>
  19. #include <sys/byteorder.h>
  20. #include <board.h>
  21. #include <soc_pmu.h>
  22. #include <logging/log.h>
  23. #include <device.h>
  24. #include <drivers/gpio.h>
  25. #include <soc.h>
  26. #include <string.h>
  27. #include <drivers/i2c.h>
  28. //#include <board_cfg.h>
  29. #include <drivers/uart.h>
  30. LOG_MODULE_REGISTER(sgm832a, CONFIG_SYS_LOG_INPUT_DEV_LEVEL);
  31. #define sgm832_typec0_slaver_addr (0x8A >> 1)
  32. #define sgm832_typec1_slaver_addr (0x82 >> 1)
  33. //sgm832 Register Address
  34. #define CONFIGURATION_REGISTER 0x00
  35. #define SHUNT_VOLTAGE_REGISTER 0x01
  36. #define BUS_VOLTAGE_REGISTER 0x02
  37. #define POWER_REGISTER 0x03
  38. #define CURRENT_REGISTER 0x04
  39. #define CALIBRATION_REGISTER 0x05
  40. #define MASK_ENABLE_REGISTER 0x06
  41. #define ALERT_LIMIT_REGISTER 0x07
  42. #define MANUFACTURER_ID_REGISTER 0xFE
  43. #define DIE_ID_REGISTER 0xFF
  44. //#ifndef CONFIG_MERGE_WORK_Q
  45. //#define CONFIG_USED_TP_WORK_QUEUE 0
  46. //#endif
  47. #ifdef CONFIG_USED_TP_WORK_QUEUE
  48. #define CONFIG_TIMER_WORK_Q_STACK_SIZE 1280
  49. struct k_work_q timer_drv_q;
  50. K_THREAD_STACK_DEFINE(timer_work_q_stack, CONFIG_TIMER_WORK_Q_STACK_SIZE);
  51. #endif
  52. struct acts_sgm_data {
  53. input_notify_t notify;
  54. const struct device *i2c_dev;
  55. const struct device *gpio_dev;
  56. const struct device *this_dev;
  57. struct gpio_callback key_gpio_cb;
  58. struct k_work init_timer;
  59. bool inited;
  60. #ifdef CONFIG_PM_DEVICE
  61. uint32_t pm_state;
  62. #endif
  63. };
  64. uint16_t sgm_crc[2] __attribute((used)) = {0};
  65. static struct acts_sgm_data sgm_acts_ddata;
  66. static void sgm832_typec_get_data(const struct device *i2c_dev, uint16_t sgm832_typec_slaver_addr, uint8_t typec_num);
  67. //static void sgm832_typec1_get_data(const struct device *i2c_dev);
  68. extern void uart2_poll_out_ch(int c);
  69. #include <drivers/hrtimer.h>
  70. #if 1
  71. static struct hrtimer g_sgm_ht_read;
  72. static void sgm832_acts_handler(struct k_work *work)
  73. {
  74. static struct acts_sgm_data *power_consumption = &sgm_acts_ddata;
  75. sgm832_typec_get_data(power_consumption->i2c_dev, sgm832_typec0_slaver_addr, 0); //不在ISR中完成,防止中断嵌套
  76. sgm832_typec_get_data(power_consumption->i2c_dev, sgm832_typec1_slaver_addr, 1); //不在ISR中完成,防止中断嵌套
  77. //sgm832_typec1_get_data(power_consumption->i2c_dev); //不在ISR中完成,防止中断嵌套
  78. }
  79. K_WORK_DEFINE(sgm832_acts, sgm832_acts_handler);
  80. static void htimer_fun(struct hrtimer *ttimer, void *expiry_fn_arg)
  81. {
  82. //static int t;
  83. //printk("%d ---htimer--\n", t++);
  84. k_work_submit(&sgm832_acts); //向系统工作队列提交一个工作项,让工作队列的线程将执行该工作
  85. }
  86. static void htimer_read(unsigned int ms)
  87. {
  88. hrtimer_init(&g_sgm_ht_read, htimer_fun, NULL);
  89. hrtimer_start(&g_sgm_ht_read, 1000*ms, 1000*ms);
  90. }
  91. #endif
  92. float f_ShuntVoltage[2] = {0.0}, f_BusVoltage[2] = {0.0}, f_Power[2] = {0.0}, f_Current[2] = {0.0};
  93. static void sgm832_typec_get_data(const struct device *i2c_dev, uint16_t sgm832_typec_slaver_addr, uint8_t typec_num)
  94. {
  95. #if 1
  96. //uint8_t i;
  97. //float f_ShuntVoltage = 0.0, f_BusVoltage = 0.0, f_Power = 0.0, f_Current = 0.0;
  98. //uint16_t u16_ShuntVoltage;
  99. static uint8_t write_cmd[10] = {CONFIGURATION_REGISTER, SHUNT_VOLTAGE_REGISTER,
  100. BUS_VOLTAGE_REGISTER, POWER_REGISTER,
  101. CURRENT_REGISTER, CALIBRATION_REGISTER,
  102. MASK_ENABLE_REGISTER, ALERT_LIMIT_REGISTER,
  103. MANUFACTURER_ID_REGISTER, DIE_ID_REGISTER};
  104. static uint16_t read_data[1] = {0};
  105. int ret = 0;
  106. //printk("sgm832 typec%d get data\n", typec_num);
  107. //00H Configuartion Register
  108. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, write_cmd, 1, read_data, 2);
  109. if (ret != 0)
  110. {
  111. printk("sgm832 typec%d i2c_write_read Configuartion Register ERR\n", typec_num);
  112. }
  113. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  114. //printk("ConfigReg: 0x%04x\n", read_data[0]);
  115. //01H Shunt Voltage Register
  116. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[1], 1, read_data, 2);
  117. if (ret == 0)
  118. {
  119. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  120. if (read_data[0] & 0x8000) {
  121. // Sign-extend for negative ShuntVoltage
  122. read_data[0] = ~read_data[0] + 1;
  123. }
  124. f_ShuntVoltage[typec_num] = read_data[0] * 2.5 * 0.001;
  125. }
  126. else
  127. {
  128. printk("sgm832 typec%d i2c_write_read Shunt_Voltage ERR\n", typec_num);
  129. }
  130. //printk("Shunt_Voltage: %.4f mV\n", f_ShuntVoltage[typec_num]);
  131. //printk("ConfigReg: 0x%04x, ShuntVoltage: %.4f mV, BusVoltage: %.3f V, Power: 0x%04x, Current: 0x%04x, Calibration: 0x%04x, MaskEnable: 0x%04x, AlertLimit: 0x%04x\n",
  132. // read_data[0], f_ShuntVoltage, f_BusVoltage, read_data[3], read_data[4], read_data[5], read_data[6], read_data[7]);
  133. //02H Bus Voltage Register
  134. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[2], 1, read_data, 2);
  135. if (ret != 0)
  136. {
  137. printk("sgm832 typec%d i2c_write_read Bus Voltage Register ERR\n", typec_num);
  138. }
  139. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  140. f_BusVoltage[typec_num] = (float)read_data[0] * 1.25 * 0.001;
  141. //printk("Bus_Voltage: %.3f V\n", f_BusVoltage[typec_num]);
  142. //03H Power Register
  143. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[3], 1, read_data, 2);
  144. if (ret != 0)
  145. {
  146. printk("sgm832 typec%d i2c_write_read Power Register ERR\n", typec_num);
  147. }
  148. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  149. f_Power[typec_num] = (float)read_data[0] * 25 * 0.001;
  150. //printk("Power: %.3f mW\n", f_Power[typec_num]);
  151. //04H Current Register
  152. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[4], 1, read_data, 2);
  153. if (ret == 0)
  154. {
  155. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  156. if (read_data[0] & 0x8000) {
  157. // Sign-extend for negative Current
  158. read_data[0] = ~read_data[0] + 1;
  159. }
  160. f_Current[typec_num] = read_data[0] * 0.001;
  161. }
  162. else
  163. {
  164. printk("sgm832 typec%d i2c_write_read Current Register ERR\n", typec_num);
  165. }
  166. //printk("Current: %.3f mA\n", f_Current[typec_num]);
  167. //05H Calibration Register
  168. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[5], 1, read_data, 2);
  169. if (ret != 0)
  170. {
  171. printk("sgm832 typec%d i2c_write_read Calibration Register ERR\n", typec_num);
  172. }
  173. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  174. //printk("Calibration: 0x%04x\n", read_data[0]);
  175. //06H Mask/Enable Register
  176. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[6], 1, read_data, 2);
  177. if (ret != 0)
  178. {
  179. printk("sgm832 typec%d i2c_write_read Mask/Enable Register ERR\n", typec_num);
  180. }
  181. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  182. //printk("Mask/Enable: 0x%04x\n", read_data[0]);
  183. //07H AlertLimit Register
  184. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[7], 1, read_data, 2);
  185. if (ret != 0)
  186. {
  187. printk("sgm832 typec%d i2c_write_read AlertLimit Register ERR\n", typec_num);
  188. }
  189. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  190. //printk("AlertLimit: 0x%04x\n", read_data[0]);
  191. //FEH Manufacturer ID Register
  192. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[8], 1, read_data, 2);
  193. if (ret != 0)
  194. {
  195. printk("sgm832 typec%d i2c_write_read Manufacturer ID Register ERR\n", typec_num);
  196. }
  197. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  198. //printk("Manufacturer_ID: 0x%04x\n", read_data[0]);
  199. //FFH Die ID Register
  200. ret = i2c_write_read(i2c_dev, sgm832_typec_slaver_addr, &write_cmd[9], 1, read_data, 2);
  201. if (ret != 0)
  202. {
  203. printk("sgm832 typec%d i2c_write_read Die ID Register ERR\n", typec_num);
  204. }
  205. read_data[0] = ((read_data[0] & 0xFF00) >> 8) + ((read_data[0] & 0x00FF) << 8);
  206. //printk("Die_ID: 0x%04x\n", read_data[0]);
  207. #endif
  208. }
  209. #if 0
  210. static void sgm832_typec1_get_shuntvoltage(const struct device *i2c_dev)
  211. {
  212. #if 1
  213. //uint8_t i;
  214. float f_ShuntVoltage = 0.0, f_BusVoltage = 0.0;
  215. //uint16_t u16_ShuntVoltage;
  216. static uint8_t write_cmd[2] = {CONFIGURATION_REGISTER, MANUFACTURER_ID_REGISTER};
  217. static uint16_t read_data[8] = {0};
  218. int ret = 0;
  219. printk("sgm832 typec1 get data\n");
  220. ret = i2c_write_read(i2c_dev, sgm832_typec1_slaver_addr, write_cmd, 1, read_data, sizeof(read_data));
  221. //ret = i2c_burst_read(i2c_dev, sgm832_typec1_slaver_addr, CONFIGURATION_REGISTER, read_data, sizeof(read_data));
  222. //ret = i2c_read(i2c_dev, read_data, 7, sgm832_typec1_slaver_addr);
  223. if (ret == 0)
  224. {
  225. if (read_data[1] & 0x8000) {
  226. // Sign-extend for negative ShuntVoltage
  227. read_data[1] = ~read_data[1] + 1;
  228. //printf( "ShuntVoltage: 0x%04x\n", u16_ShuntVoltage);
  229. f_ShuntVoltage = read_data[1] * 2.5 * 0.001;
  230. }
  231. else {
  232. f_ShuntVoltage = read_data[1] * 2.5 * 0.001;
  233. }
  234. //read_data[2] = ((read_data[2] & 0xFF00) >> 8) + ((read_data[2] & 0x00FF) << 8);
  235. f_BusVoltage = (float)read_data[2] * 1.25 * 0.001;
  236. //uart2_poll_out_ch(read_data[i]); //uart2 send data
  237. }
  238. else
  239. {
  240. printk("sgm832 typec1 i2c_write_read ERR\n");
  241. }
  242. printk("ConfigReg: 0x%04x, ShuntVoltage: %.4f mV, BusVoltage: %.3f V, Power: 0x%04x, Current: 0x%04x, Calibration: 0x%04x, MaskEnable: 0x%04x, AlertLimit: 0x%04x\n",
  243. read_data[0], f_ShuntVoltage, f_BusVoltage, read_data[3], read_data[4], read_data[5], read_data[6], read_data[7]);
  244. ret = i2c_write_read(i2c_dev, sgm832_typec1_slaver_addr, &write_cmd[1], 1, read_data, 4);
  245. //ret = i2c_burst_read(i2c_dev, sgm832_typec1_slaver_addr, CONFIGURATION_REGISTER, read_data, sizeof(read_data));
  246. //ret = i2c_read(i2c_dev, read_data, 7, sgm832_typec1_slaver_addr);
  247. if (ret == 0)
  248. {
  249. }
  250. else
  251. {
  252. printk("sgm832 typec1 i2c_write_read ERR\n");
  253. }
  254. printk("ManufacturerID: 0x%04x, DieID: 0x%04x\n",
  255. read_data[0], read_data[1]);
  256. #endif
  257. }
  258. #endif
  259. static void sgm832_typec_calibration(const struct device *i2c_dev, uint16_t sgm832_typec_slaver_addr, uint8_t typec_num)
  260. {
  261. static uint8_t write_data[3] = {CALIBRATION_REGISTER, 0x0A, 0};
  262. int ret = 0;
  263. ret = i2c_write(i2c_dev, write_data, 3, sgm832_typec_slaver_addr);
  264. if (ret != 0)
  265. {
  266. printk("i2c write sgm832_typec%d Calibration Register ERR\n", typec_num);
  267. }
  268. }
  269. static void _sgm832a_init_work(struct k_work *work)
  270. {
  271. struct acts_sgm_data *power_consumption = &sgm_acts_ddata;
  272. printk("sgm832a init work\n");
  273. power_consumption->inited = true;
  274. //write Calibration Register
  275. sgm832_typec_calibration(power_consumption->i2c_dev, sgm832_typec0_slaver_addr, 0);
  276. sgm832_typec_calibration(power_consumption->i2c_dev, sgm832_typec1_slaver_addr, 1);
  277. htimer_read(1000); //1000ms = 1s
  278. }
  279. static int _sgm832a_acts_init(const struct device *dev)
  280. {
  281. struct acts_sgm_data *power_consumption = dev->data;
  282. printk("sgm832a acts init\n");
  283. #if 1
  284. power_consumption->this_dev = (struct device *)dev;
  285. power_consumption->i2c_dev = (struct device *)device_get_binding(CONFIG_SGM832A_I2C_NAME);
  286. if (!power_consumption->i2c_dev) {
  287. printk("can not access right i2c device\n");
  288. return -1;
  289. }
  290. power_consumption->inited = false;
  291. k_work_init(&power_consumption->init_timer, _sgm832a_init_work);
  292. #ifdef CONFIG_USED_TP_WORK_QUEUE
  293. k_work_queue_start(&timer_drv_q, timer_work_q_stack, K_THREAD_STACK_SIZEOF(timer_work_q_stack), 7, NULL);
  294. k_work_submit_to_queue(&timer_drv_q, &power_consumption->init_timer);
  295. #else
  296. k_work_submit(&power_consumption->init_timer);
  297. #endif
  298. #endif
  299. printk("sgm832a acts init exit\n");
  300. return 0;
  301. }
  302. #ifdef CONFIG_PM_DEVICE
  303. static void _sgm832a_suspend(const struct device *dev)
  304. {
  305. //struct acts_sgm_data *power_consumption = (struct acts_sgm_data *)dev->data;
  306. printk("sgm832a suspend\n");
  307. hrtimer_stop(&g_sgm_ht_read);
  308. }
  309. static void _sgm832a_resume(const struct device *dev)
  310. {
  311. struct acts_sgm_data *power_consumption = (struct acts_sgm_data *)dev->data;
  312. power_consumption->i2c_dev = (struct device *)device_get_binding(CONFIG_SGM832A_I2C_NAME);
  313. if (!power_consumption->i2c_dev) {
  314. printk("can not access right i2c device\n");
  315. return;
  316. }
  317. power_consumption->inited = false;
  318. k_work_init(&power_consumption->init_timer, _sgm832a_init_work);
  319. printk("sgm832a resume\n");
  320. #ifdef CONFIG_USED_TP_WORK_QUEUE
  321. k_work_submit_to_queue(&tp_drv_q, &power_consumption->init_timer);
  322. #else
  323. k_work_submit(&power_consumption->init_timer);
  324. #endif
  325. }
  326. static int _sgm832a_pm_control(const struct device *dev, enum pm_device_action action)
  327. {
  328. int ret = 0;
  329. //printk("sgm832a pm control\n");
  330. switch (action) {
  331. case PM_DEVICE_ACTION_SUSPEND:
  332. break;
  333. case PM_DEVICE_ACTION_RESUME:
  334. break;
  335. case PM_DEVICE_ACTION_EARLY_SUSPEND:
  336. _sgm832a_suspend(dev);
  337. break;
  338. case PM_DEVICE_ACTION_LATE_RESUME:
  339. _sgm832a_resume(dev);
  340. break;
  341. default:
  342. break;
  343. }
  344. return ret;
  345. }
  346. #else /* CONFIG_PM_DEVICE */
  347. static int _sgm832a_pm_control(const struct device *dev, uint32_t ctrl_command,
  348. void *context, device_pm_cb cb, void *arg)
  349. {
  350. }
  351. #endif
  352. #if IS_ENABLED(CONFIG_SGM832A)
  353. DEVICE_DEFINE(sgm832a, CONFIG_SGM832A_DEV_NAME, _sgm832a_acts_init,
  354. _sgm832a_pm_control, &sgm_acts_ddata, NULL, POST_KERNEL,
  355. 50, NULL);
  356. #endif