123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- /*
- * Copyright (c) 2016 Wind River Systems, Inc.
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- #include <kernel.h>
- #include <toolchain.h>
- #include <linker/sections.h>
- #include <drivers/timer/system_timer.h>
- #include <wait_q.h>
- #include <pm/pm.h>
- #include <stdbool.h>
- #include <logging/log.h>
- #include <ksched.h>
- #include <kswap.h>
- LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
- /**
- * @brief Indicate that kernel is idling in tickless mode
- *
- * Sets the kernel data structure idle field to either a positive value or
- * K_FOREVER.
- */
- static void pm_save_idle(void)
- {
- #ifdef CONFIG_PM
- int32_t ticks = z_get_next_timeout_expiry();
- _kernel.idle = ticks;
- /*
- * Call the suspend hook function of the soc interface to allow
- * entry into a low power state. The function returns
- * PM_STATE_ACTIVE if low power state was not entered, in which
- * case, kernel does normal idle processing.
- *
- * This function is entered with interrupts disabled. If a low power
- * state was entered, then the hook function should enable inerrupts
- * before exiting. This is because the kernel does not do its own idle
- * processing in those cases i.e. skips k_cpu_idle(). The kernel's
- * idle processing re-enables interrupts which is essential for
- * the kernel's scheduling logic.
- */
- if (pm_system_suspend(ticks) == PM_STATE_ACTIVE) {
- k_cpu_idle();
- }
- #endif
- }
- void z_pm_save_idle_exit(int32_t ticks)
- {
- #ifdef CONFIG_PM
- /* Some CPU low power states require notification at the ISR
- * to allow any operations that needs to be done before kernel
- * switches task or processes nested interrupts.
- * This can be simply ignored if not required.
- */
- pm_system_resume();
- #endif /* CONFIG_PM */
- sys_clock_idle_exit();
- }
- void idle(void *unused1, void *unused2, void *unused3)
- {
- ARG_UNUSED(unused1);
- ARG_UNUSED(unused2);
- ARG_UNUSED(unused3);
- __ASSERT_NO_MSG(_current->base.prio >= 0);
- while (true) {
- /* SMP systems without a working IPI can't
- * actual enter an idle state, because they
- * can't be notified of scheduler changes
- * (i.e. threads they should run). They just
- * spin in a yield loop. This is intended as
- * a fallback configuration for new platform
- * bringup.
- */
- if (IS_ENABLED(CONFIG_SMP) &&
- !IS_ENABLED(CONFIG_SCHED_IPI_SUPPORTED)) {
- k_busy_wait(100);
- k_yield();
- continue;
- }
- /* Note weird API: k_cpu_idle() is called with local
- * CPU interrupts masked, and returns with them
- * unmasked. It does not take a spinlock or other
- * higher level construct.
- */
- (void) arch_irq_lock();
- if (IS_ENABLED(CONFIG_PM)) {
- pm_save_idle();
- } else {
- k_cpu_idle();
- }
- #if !defined(CONFIG_PREEMPT_ENABLED)
- # if !defined(CONFIG_USE_SWITCH) || defined(CONFIG_SPARC)
- /* A legacy mess: the idle thread is by definition
- * preemptible as far as the modern scheduler is
- * concerned, but older platforms use
- * CONFIG_PREEMPT_ENABLED=n as an optimization hint
- * that interrupt exit always returns to the
- * interrupted context. So in that setup we need to
- * explicitly yield in the idle thread otherwise
- * nothing else will run once it starts.
- */
- if (_kernel.ready_q.cache != _current) {
- z_swap_unlocked();
- }
- # endif
- #endif
- }
- }
|