ksched.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * Copyright (c) 2016-2017 Wind River Systems, Inc.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
  7. #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
  8. #include <kernel_structs.h>
  9. #include <kernel_internal.h>
  10. #include <timeout_q.h>
  11. #include <tracing/tracing.h>
  12. #include <stdbool.h>
  13. BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO
  14. >= K_HIGHEST_APPLICATION_THREAD_PRIO);
  15. #ifdef CONFIG_MULTITHREADING
  16. #define Z_VALID_PRIO(prio, entry_point) \
  17. (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \
  18. ((K_LOWEST_APPLICATION_THREAD_PRIO \
  19. >= K_HIGHEST_APPLICATION_THREAD_PRIO) \
  20. && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \
  21. && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO))
  22. #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \
  23. __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \
  24. "invalid priority (%d); allowed range: %d to %d", \
  25. (prio), \
  26. K_LOWEST_APPLICATION_THREAD_PRIO, \
  27. K_HIGHEST_APPLICATION_THREAD_PRIO); \
  28. } while (false)
  29. #else
  30. #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1)
  31. #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
  32. #endif
  33. void z_sched_init(void);
  34. void z_move_thread_to_end_of_prio_q(struct k_thread *thread);
  35. int z_is_thread_time_slicing(struct k_thread *thread);
  36. void z_unpend_thread_no_timeout(struct k_thread *thread);
  37. struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q);
  38. int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
  39. _wait_q_t *wait_q, k_timeout_t timeout);
  40. int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout);
  41. void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
  42. k_timeout_t timeout);
  43. void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key);
  44. void z_reschedule_irqlock(uint32_t key);
  45. struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q);
  46. void z_unpend_thread(struct k_thread *thread);
  47. int z_unpend_all(_wait_q_t *wait_q);
  48. void z_thread_priority_set(struct k_thread *thread, int prio);
  49. bool z_set_prio(struct k_thread *thread, int prio);
  50. void *z_get_next_switch_handle(void *interrupted);
  51. void idle(void *unused1, void *unused2, void *unused3);
  52. void z_time_slice(int ticks);
  53. void z_reset_time_slice(void);
  54. void z_sched_abort(struct k_thread *thread);
  55. void z_sched_ipi(void);
  56. void z_sched_start(struct k_thread *thread);
  57. void z_ready_thread(struct k_thread *thread);
  58. void z_requeue_current(struct k_thread *curr);
  59. struct k_thread *z_swap_next_thread(void);
  60. void z_thread_abort(struct k_thread *thread);
  61. static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout)
  62. {
  63. (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout);
  64. }
  65. static inline void z_reschedule_unlocked(void)
  66. {
  67. (void) z_reschedule_irqlock(arch_irq_lock());
  68. }
  69. static inline bool z_is_idle_thread_entry(void *entry_point)
  70. {
  71. return entry_point == idle;
  72. }
  73. static inline bool z_is_idle_thread_object(struct k_thread *thread)
  74. {
  75. #ifdef CONFIG_MULTITHREADING
  76. #ifdef CONFIG_SMP
  77. return thread->base.is_idle;
  78. #else
  79. return thread == &z_idle_threads[0];
  80. #endif
  81. #else
  82. return false;
  83. #endif /* CONFIG_MULTITHREADING */
  84. }
  85. static inline bool z_is_thread_suspended(struct k_thread *thread)
  86. {
  87. return (thread->base.thread_state & _THREAD_SUSPENDED) != 0U;
  88. }
  89. static inline bool z_is_thread_pending(struct k_thread *thread)
  90. {
  91. return (thread->base.thread_state & _THREAD_PENDING) != 0U;
  92. }
  93. static inline bool z_is_thread_prevented_from_running(struct k_thread *thread)
  94. {
  95. uint8_t state = thread->base.thread_state;
  96. return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD |
  97. _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U;
  98. }
  99. static inline bool z_is_thread_timeout_active(struct k_thread *thread)
  100. {
  101. return !z_is_inactive_timeout(&thread->base.timeout);
  102. }
  103. static inline bool z_is_thread_ready(struct k_thread *thread)
  104. {
  105. return !((z_is_thread_prevented_from_running(thread)) != 0U ||
  106. z_is_thread_timeout_active(thread));
  107. }
  108. static inline bool z_has_thread_started(struct k_thread *thread)
  109. {
  110. return (thread->base.thread_state & _THREAD_PRESTART) == 0U;
  111. }
  112. static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state)
  113. {
  114. return (thread->base.thread_state & state) != 0U;
  115. }
  116. static inline bool z_is_thread_queued(struct k_thread *thread)
  117. {
  118. return z_is_thread_state_set(thread, _THREAD_QUEUED);
  119. }
  120. static inline void z_mark_thread_as_suspended(struct k_thread *thread)
  121. {
  122. thread->base.thread_state |= _THREAD_SUSPENDED;
  123. SYS_PORT_TRACING_FUNC(k_thread, sched_suspend, thread);
  124. }
  125. static inline void z_mark_thread_as_not_suspended(struct k_thread *thread)
  126. {
  127. thread->base.thread_state &= ~_THREAD_SUSPENDED;
  128. SYS_PORT_TRACING_FUNC(k_thread, sched_resume, thread);
  129. }
  130. static inline void z_mark_thread_as_started(struct k_thread *thread)
  131. {
  132. thread->base.thread_state &= ~_THREAD_PRESTART;
  133. }
  134. static inline void z_mark_thread_as_pending(struct k_thread *thread)
  135. {
  136. thread->base.thread_state |= _THREAD_PENDING;
  137. }
  138. static inline void z_mark_thread_as_not_pending(struct k_thread *thread)
  139. {
  140. thread->base.thread_state &= ~_THREAD_PENDING;
  141. }
  142. static inline void z_set_thread_states(struct k_thread *thread, uint32_t states)
  143. {
  144. thread->base.thread_state |= states;
  145. }
  146. static inline void z_reset_thread_states(struct k_thread *thread,
  147. uint32_t states)
  148. {
  149. thread->base.thread_state &= ~states;
  150. }
  151. static inline bool z_is_under_prio_ceiling(int prio)
  152. {
  153. return prio >= CONFIG_PRIORITY_CEILING;
  154. }
  155. static inline int z_get_new_prio_with_ceiling(int prio)
  156. {
  157. return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
  158. }
  159. static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
  160. {
  161. return prio1 <= prio2;
  162. }
  163. static inline bool z_is_prio_higher_or_equal(int prio1, int prio2)
  164. {
  165. return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
  166. }
  167. static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
  168. {
  169. return prio1 >= prio2;
  170. }
  171. static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2)
  172. {
  173. return prio1 < prio2;
  174. }
  175. static inline bool z_is_prio_higher(int prio, int test_prio)
  176. {
  177. return z_is_prio1_higher_than_prio2(prio, test_prio);
  178. }
  179. static inline bool z_is_prio_lower_or_equal(int prio1, int prio2)
  180. {
  181. return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
  182. }
  183. int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2);
  184. static inline bool _is_valid_prio(int prio, void *entry_point)
  185. {
  186. if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) {
  187. return true;
  188. }
  189. if (!z_is_prio_higher_or_equal(prio,
  190. K_LOWEST_APPLICATION_THREAD_PRIO)) {
  191. return false;
  192. }
  193. if (!z_is_prio_lower_or_equal(prio,
  194. K_HIGHEST_APPLICATION_THREAD_PRIO)) {
  195. return false;
  196. }
  197. return true;
  198. }
  199. static inline void _ready_one_thread(_wait_q_t *wq)
  200. {
  201. struct k_thread *thread = z_unpend_first_thread(wq);
  202. if (thread != NULL) {
  203. z_ready_thread(thread);
  204. }
  205. }
  206. static inline void z_sched_lock(void)
  207. {
  208. __ASSERT(!arch_is_in_isr(), "");
  209. __ASSERT(_current->base.sched_locked != 1U, "");
  210. --_current->base.sched_locked;
  211. compiler_barrier();
  212. }
  213. static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void)
  214. {
  215. __ASSERT(!arch_is_in_isr(), "");
  216. __ASSERT(_current->base.sched_locked != 0U, "");
  217. compiler_barrier();
  218. ++_current->base.sched_locked;
  219. }
  220. static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread)
  221. {
  222. #ifdef CONFIG_SYS_CLOCK_EXISTS
  223. return thread->base.timeout.dticks == _EXPIRED;
  224. #else
  225. return 0;
  226. #endif
  227. }
  228. /*
  229. * APIs for working with the Zephyr kernel scheduler. Intended for use in
  230. * management of IPC objects, either in the core kernel or other IPC
  231. * implemented by OS compatibility layers, providing basic wait/wake operations
  232. * with spinlocks used for synchronization.
  233. *
  234. * These APIs are public and will be treated as contract, even if the
  235. * underlying scheduler implementation changes.
  236. */
  237. /**
  238. * Wake up a thread pending on the provided wait queue
  239. *
  240. * Given a wait_q, wake up the highest priority thread on the queue. If the
  241. * queue was empty just return false.
  242. *
  243. * Otherwise, do the following, in order, holding sched_spinlock the entire
  244. * time so that the thread state is guaranteed not to change:
  245. * - Set the thread's swap return values to swap_retval and swap_data
  246. * - un-pend and ready the thread, but do not invoke the scheduler.
  247. *
  248. * Repeated calls to this function until it returns false is a suitable
  249. * way to wake all threads on the queue.
  250. *
  251. * It is up to the caller to implement locking such that the return value of
  252. * this function (whether a thread was woken up or not) does not immediately
  253. * become stale. Calls to wait and wake on the same wait_q object must have
  254. * synchronization. Calling this without holding any spinlock is a sign that
  255. * this API is not being used properly.
  256. *
  257. * @param wait_q Wait queue to wake up the highest prio thread
  258. * @param swap_retval Swap return value for woken thread
  259. * @param swap_data Data return value to supplement swap_retval. May be NULL.
  260. * @retval true If a thread was woken up
  261. * @retval false If the wait_q was empty
  262. */
  263. bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data);
  264. /**
  265. * Wake up all threads pending on the provided wait queue
  266. *
  267. * Convenience function to invoke z_sched_wake() on all threads in the queue
  268. * until there are no more to wake up.
  269. *
  270. * @param wait_q Wait queue to wake up the highest prio thread
  271. * @param swap_retval Swap return value for woken thread
  272. * @param swap_data Data return value to supplement swap_retval. May be NULL.
  273. * @retval true If any threads were woken up
  274. * @retval false If the wait_q was empty
  275. */
  276. static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval,
  277. void *swap_data)
  278. {
  279. bool woken = false;
  280. while (z_sched_wake(wait_q, swap_retval, swap_data)) {
  281. woken = true;
  282. }
  283. /* True if we woke at least one thread up */
  284. return woken;
  285. }
  286. /**
  287. * Atomically put the current thread to sleep on a wait queue, with timeout
  288. *
  289. * The thread will be added to the provided waitqueue. The lock, which should
  290. * be held by the caller with the provided key, will be released once this is
  291. * completely done and we have swapped out.
  292. *
  293. * The return value and data pointer is set by whoever woke us up via
  294. * z_sched_wake.
  295. *
  296. * @param lock Address of spinlock to release when we swap out
  297. * @param key Key to the provided spinlock when it was locked
  298. * @param wait_q Wait queue to go to sleep on
  299. * @param timeout Waiting period to be woken up, or K_FOREVER to wait
  300. * indefinitely.
  301. * @param data Storage location for data pointer set when thread was woken up.
  302. * May be NULL if not used.
  303. * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout
  304. * expired without being woken up.
  305. */
  306. int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
  307. _wait_q_t *wait_q, k_timeout_t timeout, void **data);
  308. #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */