libc-hooks.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. /*
  2. * Copyright (c) 2015, Intel Corporation.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <arch/cpu.h>
  7. #include <errno.h>
  8. #include <stdio.h>
  9. #include <malloc.h>
  10. #include <sys/__assert.h>
  11. #include <sys/stat.h>
  12. #include <linker/linker-defs.h>
  13. #include <sys/util.h>
  14. #include <sys/errno_private.h>
  15. #include <sys/libc-hooks.h>
  16. #include <syscall_handler.h>
  17. #include <app_memory/app_memdomain.h>
  18. #include <init.h>
  19. #include <sys/sem.h>
  20. #include <sys/mutex.h>
  21. #include <sys/mem_manage.h>
  22. #include <sys/time.h>
  23. #define LIBC_BSS K_APP_BMEM(z_libc_partition)
  24. #define LIBC_DATA K_APP_DMEM(z_libc_partition)
  25. /*
  26. * End result of this thorny set of ifdefs is to define:
  27. *
  28. * - HEAP_BASE base address of the heap arena
  29. * - MAX_HEAP_SIZE size of the heap arena
  30. */
  31. #ifdef CONFIG_MMU
  32. #ifdef CONFIG_USERSPACE
  33. struct k_mem_partition z_malloc_partition;
  34. #endif
  35. LIBC_BSS static unsigned char *heap_base;
  36. LIBC_BSS static size_t max_heap_size;
  37. #define HEAP_BASE heap_base
  38. #define MAX_HEAP_SIZE max_heap_size
  39. #define USE_MALLOC_PREPARE 1
  40. #elif CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
  41. /* Arena size expressed in Kconfig, due to power-of-two size/align
  42. * requirements of certain MPUs.
  43. *
  44. * We use an automatic memory partition instead of setting this up
  45. * in malloc_prepare().
  46. */
  47. K_APPMEM_PARTITION_DEFINE(z_malloc_partition);
  48. #define MALLOC_BSS K_APP_BMEM(z_malloc_partition)
  49. /* Compiler will throw an error if the provided value isn't a
  50. * power of two
  51. */
  52. MALLOC_BSS static unsigned char
  53. __aligned(CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE)
  54. heap_base[CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE];
  55. #define MAX_HEAP_SIZE CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
  56. #define HEAP_BASE heap_base
  57. #else /* Not MMU or CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE */
  58. #define USED_RAM_END_ADDR POINTER_TO_UINT(&_end)
  59. #ifdef Z_MALLOC_PARTITION_EXISTS
  60. /* Start of malloc arena needs to be aligned per MPU
  61. * requirements
  62. */
  63. struct k_mem_partition z_malloc_partition;
  64. #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
  65. #define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \
  66. CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE)
  67. #elif defined(CONFIG_ARC)
  68. #define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \
  69. Z_ARC_MPU_ALIGN)
  70. #else
  71. #error "Unsupported platform"
  72. #endif /* CONFIG_<arch> */
  73. #define USE_MALLOC_PREPARE 1
  74. #else
  75. /* End of kernel image */
  76. #define HEAP_BASE USED_RAM_END_ADDR
  77. #endif
  78. /* End of the malloc arena is the end of physical memory */
  79. #if defined(CONFIG_XTENSA)
  80. /* TODO: Why is xtensa a special case? */
  81. extern void *_heap_sentry;
  82. #define MAX_HEAP_SIZE (POINTER_TO_UINT(&_heap_sentry) - \
  83. HEAP_BASE)
  84. #else
  85. #define MAX_HEAP_SIZE (KB(CONFIG_SRAM_SIZE) - (HEAP_BASE - \
  86. CONFIG_SRAM_BASE_ADDRESS))
  87. #endif /* CONFIG_XTENSA */
  88. #endif
  89. static int malloc_prepare(const struct device *unused)
  90. {
  91. ARG_UNUSED(unused);
  92. #ifdef USE_MALLOC_PREPARE
  93. #ifdef CONFIG_MMU
  94. max_heap_size = MIN(CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE,
  95. k_mem_free_get());
  96. if (max_heap_size != 0) {
  97. heap_base = k_mem_map(max_heap_size, K_MEM_PERM_RW);
  98. __ASSERT(heap_base != NULL,
  99. "failed to allocate heap of size %zu", max_heap_size);
  100. }
  101. #endif /* CONFIG_MMU */
  102. #ifdef Z_MALLOC_PARTITION_EXISTS
  103. z_malloc_partition.start = (uintptr_t)HEAP_BASE;
  104. z_malloc_partition.size = (size_t)MAX_HEAP_SIZE;
  105. z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW;
  106. #endif /* Z_MALLOC_PARTITION_EXISTS */
  107. #endif /* USE_MALLOC_PREPARE */
  108. /*
  109. * Validate that the memory space available for the newlib heap is
  110. * greater than the minimum required size.
  111. */
  112. __ASSERT(MAX_HEAP_SIZE >= CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE,
  113. "memory space available for newlib heap is less than the "
  114. "minimum required size specified by "
  115. "CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE");
  116. return 0;
  117. }
  118. SYS_INIT(malloc_prepare, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
  119. /* Current offset from HEAP_BASE of unused memory */
  120. LIBC_BSS static size_t heap_sz;
  121. static int _stdout_hook_default(int c)
  122. {
  123. (void)(c); /* Prevent warning about unused argument */
  124. return EOF;
  125. }
  126. static int (*_stdout_hook)(int) = _stdout_hook_default;
  127. void __stdout_hook_install(int (*hook)(int))
  128. {
  129. _stdout_hook = hook;
  130. }
  131. static unsigned char _stdin_hook_default(void)
  132. {
  133. return 0;
  134. }
  135. static unsigned char (*_stdin_hook)(void) = _stdin_hook_default;
  136. void __stdin_hook_install(unsigned char (*hook)(void))
  137. {
  138. _stdin_hook = hook;
  139. }
  140. int z_impl_zephyr_read_stdin(char *buf, int nbytes)
  141. {
  142. int i = 0;
  143. for (i = 0; i < nbytes; i++) {
  144. *(buf + i) = _stdin_hook();
  145. if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) {
  146. i++;
  147. break;
  148. }
  149. }
  150. return i;
  151. }
  152. #ifdef CONFIG_USERSPACE
  153. static inline int z_vrfy_zephyr_read_stdin(char *buf, int nbytes)
  154. {
  155. Z_OOPS(Z_SYSCALL_MEMORY_WRITE(buf, nbytes));
  156. return z_impl_zephyr_read_stdin((char *)buf, nbytes);
  157. }
  158. #include <syscalls/zephyr_read_stdin_mrsh.c>
  159. #endif
  160. int z_impl_zephyr_write_stdout(const void *buffer, int nbytes)
  161. {
  162. const char *buf = buffer;
  163. int i;
  164. for (i = 0; i < nbytes; i++) {
  165. if (*(buf + i) == '\n') {
  166. _stdout_hook('\r');
  167. }
  168. _stdout_hook(*(buf + i));
  169. }
  170. return nbytes;
  171. }
  172. #ifdef CONFIG_USERSPACE
  173. static inline int z_vrfy_zephyr_write_stdout(const void *buf, int nbytes)
  174. {
  175. Z_OOPS(Z_SYSCALL_MEMORY_READ(buf, nbytes));
  176. return z_impl_zephyr_write_stdout((const void *)buf, nbytes);
  177. }
  178. #include <syscalls/zephyr_write_stdout_mrsh.c>
  179. #endif
  180. #ifndef CONFIG_POSIX_API
  181. int _read(int fd, char *buf, int nbytes)
  182. {
  183. ARG_UNUSED(fd);
  184. return zephyr_read_stdin(buf, nbytes);
  185. }
  186. __weak FUNC_ALIAS(_read, read, int);
  187. int _write(int fd, const void *buf, int nbytes)
  188. {
  189. ARG_UNUSED(fd);
  190. return zephyr_write_stdout(buf, nbytes);
  191. }
  192. __weak FUNC_ALIAS(_write, write, int);
  193. int _open(const char *name, int mode)
  194. {
  195. return -1;
  196. }
  197. __weak FUNC_ALIAS(_open, open, int);
  198. int _close(int file)
  199. {
  200. return -1;
  201. }
  202. __weak FUNC_ALIAS(_close, close, int);
  203. int _lseek(int file, int ptr, int dir)
  204. {
  205. return 0;
  206. }
  207. __weak FUNC_ALIAS(_lseek, lseek, int);
  208. #else
  209. extern ssize_t write(int file, const char *buffer, size_t count);
  210. #define _write write
  211. #endif
  212. int _isatty(int file)
  213. {
  214. return file <= 2;
  215. }
  216. __weak FUNC_ALIAS(_isatty, isatty, int);
  217. int _kill(int i, int j)
  218. {
  219. return 0;
  220. }
  221. __weak FUNC_ALIAS(_kill, kill, int);
  222. int _getpid(void)
  223. {
  224. return 0;
  225. }
  226. __weak FUNC_ALIAS(_getpid, getpid, int);
  227. int _fstat(int file, struct stat *st)
  228. {
  229. st->st_mode = S_IFCHR;
  230. return 0;
  231. }
  232. __weak FUNC_ALIAS(_fstat, fstat, int);
  233. __weak void _exit(int status)
  234. {
  235. _write(1, "exit\n", 5);
  236. while (1) {
  237. ;
  238. }
  239. }
  240. void *_sbrk(intptr_t count)
  241. {
  242. void *ret, *ptr;
  243. ptr = ((char *)HEAP_BASE) + heap_sz;
  244. if ((heap_sz + count) < MAX_HEAP_SIZE) {
  245. heap_sz += count;
  246. ret = ptr;
  247. } else {
  248. ret = (void *)-1;
  249. }
  250. return ret;
  251. }
  252. __weak FUNC_ALIAS(_sbrk, sbrk, void *);
  253. #ifdef CONFIG_MULTITHREADING
  254. /*
  255. * Newlib Retargetable Locking Interface Implementation
  256. *
  257. * When multithreading is enabled, the newlib retargetable locking interface is
  258. * defined below to override the default void implementation and provide the
  259. * Zephyr-side locks.
  260. *
  261. * NOTE: `k_mutex` and `k_sem` are used instead of `sys_mutex` and `sys_sem`
  262. * because the latter do not support dynamic allocation for now.
  263. */
  264. /* Static locks */
  265. K_MUTEX_DEFINE(__lock___sinit_recursive_mutex);
  266. K_MUTEX_DEFINE(__lock___sfp_recursive_mutex);
  267. K_MUTEX_DEFINE(__lock___atexit_recursive_mutex);
  268. K_MUTEX_DEFINE(__lock___malloc_recursive_mutex);
  269. K_MUTEX_DEFINE(__lock___env_recursive_mutex);
  270. K_SEM_DEFINE(__lock___at_quick_exit_mutex, 1, 1);
  271. K_SEM_DEFINE(__lock___tz_mutex, 1, 1);
  272. K_SEM_DEFINE(__lock___dd_hash_mutex, 1, 1);
  273. K_SEM_DEFINE(__lock___arc4random_mutex, 1, 1);
  274. #ifdef CONFIG_USERSPACE
  275. /* Grant public access to all static locks after boot */
  276. static int newlib_locks_prepare(const struct device *unused)
  277. {
  278. ARG_UNUSED(unused);
  279. /* Initialise recursive locks */
  280. k_object_access_all_grant(&__lock___sinit_recursive_mutex);
  281. k_object_access_all_grant(&__lock___sfp_recursive_mutex);
  282. k_object_access_all_grant(&__lock___atexit_recursive_mutex);
  283. k_object_access_all_grant(&__lock___malloc_recursive_mutex);
  284. k_object_access_all_grant(&__lock___env_recursive_mutex);
  285. /* Initialise non-recursive locks */
  286. k_object_access_all_grant(&__lock___at_quick_exit_mutex);
  287. k_object_access_all_grant(&__lock___tz_mutex);
  288. k_object_access_all_grant(&__lock___dd_hash_mutex);
  289. k_object_access_all_grant(&__lock___arc4random_mutex);
  290. return 0;
  291. }
  292. SYS_INIT(newlib_locks_prepare, POST_KERNEL,
  293. CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
  294. #endif /* CONFIG_USERSPACE */
  295. /* Create a new dynamic non-recursive lock */
  296. void __retarget_lock_init(_LOCK_T *lock)
  297. {
  298. __ASSERT_NO_MSG(lock != NULL);
  299. /* Allocate semaphore object */
  300. #ifndef CONFIG_USERSPACE
  301. *lock = malloc(sizeof(struct k_sem));
  302. #else
  303. *lock = k_object_alloc(K_OBJ_SEM);
  304. #endif /* !CONFIG_USERSPACE */
  305. __ASSERT(*lock != NULL, "non-recursive lock allocation failed");
  306. k_sem_init((struct k_sem *)*lock, 1, 1);
  307. }
  308. /* Create a new dynamic recursive lock */
  309. void __retarget_lock_init_recursive(_LOCK_T *lock)
  310. {
  311. __ASSERT_NO_MSG(lock != NULL);
  312. /* Allocate mutex object */
  313. #ifndef CONFIG_USERSPACE
  314. *lock = malloc(sizeof(struct k_mutex));
  315. #else
  316. *lock = k_object_alloc(K_OBJ_MUTEX);
  317. #endif /* !CONFIG_USERSPACE */
  318. __ASSERT(*lock != NULL, "recursive lock allocation failed");
  319. k_mutex_init((struct k_mutex *)*lock);
  320. }
  321. /* Close dynamic non-recursive lock */
  322. void __retarget_lock_close(_LOCK_T lock)
  323. {
  324. __ASSERT_NO_MSG(lock != NULL);
  325. #ifndef CONFIG_USERSPACE
  326. free(lock);
  327. #else
  328. k_object_release(lock);
  329. #endif /* !CONFIG_USERSPACE */
  330. }
  331. /* Close dynamic recursive lock */
  332. void __retarget_lock_close_recursive(_LOCK_T lock)
  333. {
  334. __ASSERT_NO_MSG(lock != NULL);
  335. #ifndef CONFIG_USERSPACE
  336. free(lock);
  337. #else
  338. k_object_release(lock);
  339. #endif /* !CONFIG_USERSPACE */
  340. }
  341. /* Acquiure non-recursive lock */
  342. void __retarget_lock_acquire(_LOCK_T lock)
  343. {
  344. __ASSERT_NO_MSG(lock != NULL);
  345. k_sem_take((struct k_sem *)lock, K_FOREVER);
  346. }
  347. /* Acquiure recursive lock */
  348. void __retarget_lock_acquire_recursive(_LOCK_T lock)
  349. {
  350. __ASSERT_NO_MSG(lock != NULL);
  351. k_mutex_lock((struct k_mutex *)lock, K_FOREVER);
  352. }
  353. /* Try acquiring non-recursive lock */
  354. int __retarget_lock_try_acquire(_LOCK_T lock)
  355. {
  356. __ASSERT_NO_MSG(lock != NULL);
  357. return !k_sem_take((struct k_sem *)lock, K_NO_WAIT);
  358. }
  359. /* Try acquiring recursive lock */
  360. int __retarget_lock_try_acquire_recursive(_LOCK_T lock)
  361. {
  362. __ASSERT_NO_MSG(lock != NULL);
  363. return !k_mutex_lock((struct k_mutex *)lock, K_NO_WAIT);
  364. }
  365. /* Release non-recursive lock */
  366. void __retarget_lock_release(_LOCK_T lock)
  367. {
  368. __ASSERT_NO_MSG(lock != NULL);
  369. k_sem_give((struct k_sem *)lock);
  370. }
  371. /* Release recursive lock */
  372. void __retarget_lock_release_recursive(_LOCK_T lock)
  373. {
  374. __ASSERT_NO_MSG(lock != NULL);
  375. k_mutex_unlock((struct k_mutex *)lock);
  376. }
  377. #endif /* CONFIG_MULTITHREADING */
  378. __weak int *__errno(void)
  379. {
  380. return z_errno();
  381. }
  382. /* This function gets called if static buffer overflow detection is enabled
  383. * on stdlib side (Newlib here), in case such an overflow is detected. Newlib
  384. * provides an implementation not suitable for us, so we override it here.
  385. */
  386. __weak FUNC_NORETURN void __chk_fail(void)
  387. {
  388. static const char chk_fail_msg[] = "* buffer overflow detected *\n";
  389. _write(2, chk_fail_msg, sizeof(chk_fail_msg) - 1);
  390. k_oops();
  391. CODE_UNREACHABLE;
  392. }
  393. #if CONFIG_XTENSA
  394. extern int _read(int fd, char *buf, int nbytes);
  395. extern int _open(const char *name, int mode);
  396. extern int _close(int file);
  397. extern int _lseek(int file, int ptr, int dir);
  398. /* The Newlib in xtensa toolchain has a few missing functions for the
  399. * reentrant versions of the syscalls.
  400. */
  401. _ssize_t _read_r(struct _reent *r, int fd, void *buf, size_t nbytes)
  402. {
  403. ARG_UNUSED(r);
  404. return _read(fd, (char *)buf, nbytes);
  405. }
  406. _ssize_t _write_r(struct _reent *r, int fd, const void *buf, size_t nbytes)
  407. {
  408. ARG_UNUSED(r);
  409. return _write(fd, buf, nbytes);
  410. }
  411. int _open_r(struct _reent *r, const char *name, int flags, int mode)
  412. {
  413. ARG_UNUSED(r);
  414. ARG_UNUSED(flags);
  415. return _open(name, mode);
  416. }
  417. int _close_r(struct _reent *r, int file)
  418. {
  419. ARG_UNUSED(r);
  420. return _close(file);
  421. }
  422. _off_t _lseek_r(struct _reent *r, int file, _off_t ptr, int dir)
  423. {
  424. ARG_UNUSED(r);
  425. return _lseek(file, ptr, dir);
  426. }
  427. int _isatty_r(struct _reent *r, int file)
  428. {
  429. ARG_UNUSED(r);
  430. return _isatty(file);
  431. }
  432. int _kill_r(struct _reent *r, int i, int j)
  433. {
  434. ARG_UNUSED(r);
  435. return _kill(i, j);
  436. }
  437. int _getpid_r(struct _reent *r)
  438. {
  439. ARG_UNUSED(r);
  440. return _getpid();
  441. }
  442. int _fstat_r(struct _reent *r, int file, struct stat *st)
  443. {
  444. ARG_UNUSED(r);
  445. return _fstat(file, st);
  446. }
  447. void _exit_r(struct _reent *r, int status)
  448. {
  449. ARG_UNUSED(r);
  450. _exit(status);
  451. }
  452. void *_sbrk_r(struct _reent *r, int count)
  453. {
  454. ARG_UNUSED(r);
  455. return _sbrk(count);
  456. }
  457. #endif /* CONFIG_XTENSA */
  458. int _gettimeofday(struct timeval *__tp, void *__tzp)
  459. {
  460. return gettimeofday(__tp, __tzp);
  461. }