pthread.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. * Copyright (c) 2018 Intel Corporation
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <kernel.h>
  7. #include <stdio.h>
  8. #include <sys/atomic.h>
  9. #include <ksched.h>
  10. #include <wait_q.h>
  11. #include <posix/pthread.h>
  12. #include <sys/slist.h>
  13. #define PTHREAD_INIT_FLAGS PTHREAD_CANCEL_ENABLE
  14. #define PTHREAD_CANCELED ((void *) -1)
  15. #define LOWEST_POSIX_THREAD_PRIORITY 1
  16. PTHREAD_MUTEX_DEFINE(pthread_key_lock);
  17. static const pthread_attr_t init_pthread_attrs = {
  18. .priority = LOWEST_POSIX_THREAD_PRIORITY,
  19. .stack = NULL,
  20. .stacksize = 0,
  21. .flags = PTHREAD_INIT_FLAGS,
  22. .delayedstart = 0,
  23. #if defined(CONFIG_PREEMPT_ENABLED)
  24. .schedpolicy = SCHED_RR,
  25. #else
  26. .schedpolicy = SCHED_FIFO,
  27. #endif
  28. .detachstate = PTHREAD_CREATE_JOINABLE,
  29. .initialized = true,
  30. };
  31. static struct posix_thread posix_thread_pool[CONFIG_MAX_PTHREAD_COUNT];
  32. PTHREAD_MUTEX_DEFINE(pthread_pool_lock);
  33. static bool is_posix_prio_valid(uint32_t priority, int policy)
  34. {
  35. if (priority >= sched_get_priority_min(policy) &&
  36. priority <= sched_get_priority_max(policy)) {
  37. return true;
  38. }
  39. return false;
  40. }
  41. static uint32_t zephyr_to_posix_priority(int32_t z_prio, int *policy)
  42. {
  43. uint32_t prio;
  44. if (z_prio < 0) {
  45. *policy = SCHED_FIFO;
  46. prio = -1 * (z_prio + 1);
  47. } else {
  48. *policy = SCHED_RR;
  49. prio = (CONFIG_NUM_PREEMPT_PRIORITIES - z_prio);
  50. }
  51. return prio;
  52. }
  53. static int32_t posix_to_zephyr_priority(uint32_t priority, int policy)
  54. {
  55. int32_t prio;
  56. if (policy == SCHED_FIFO) {
  57. /* Zephyr COOP priority starts from -1 */
  58. prio = -1 * (priority + 1);
  59. } else {
  60. prio = (CONFIG_NUM_PREEMPT_PRIORITIES - priority);
  61. }
  62. return prio;
  63. }
  64. /**
  65. * @brief Set scheduling parameter attributes in thread attributes object.
  66. *
  67. * See IEEE 1003.1
  68. */
  69. int pthread_attr_setschedparam(pthread_attr_t *attr,
  70. const struct sched_param *schedparam)
  71. {
  72. int priority = schedparam->sched_priority;
  73. if ((attr == NULL) || (attr->initialized == 0U) ||
  74. (is_posix_prio_valid(priority, attr->schedpolicy) == false)) {
  75. return EINVAL;
  76. }
  77. attr->priority = priority;
  78. return 0;
  79. }
  80. /**
  81. * @brief Set stack attributes in thread attributes object.
  82. *
  83. * See IEEE 1003.1
  84. */
  85. int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
  86. size_t stacksize)
  87. {
  88. if (stackaddr == NULL) {
  89. return EACCES;
  90. }
  91. attr->stack = stackaddr;
  92. attr->stacksize = stacksize;
  93. return 0;
  94. }
  95. static void zephyr_thread_wrapper(void *arg1, void *arg2, void *arg3)
  96. {
  97. void * (*fun_ptr)(void *) = arg3;
  98. fun_ptr(arg1);
  99. pthread_exit(NULL);
  100. }
  101. /**
  102. * @brief Create a new thread.
  103. *
  104. * Pthread attribute should not be NULL. API will return Error on NULL
  105. * attribute value.
  106. *
  107. * See IEEE 1003.1
  108. */
  109. int pthread_create(pthread_t *newthread, const pthread_attr_t *attr,
  110. void *(*threadroutine)(void *), void *arg)
  111. {
  112. int32_t prio;
  113. uint32_t pthread_num;
  114. pthread_condattr_t cond_attr;
  115. struct posix_thread *thread;
  116. /*
  117. * FIXME: Pthread attribute must be non-null and it provides stack
  118. * pointer and stack size. So even though POSIX 1003.1 spec accepts
  119. * attrib as NULL but zephyr needs it initialized with valid stack.
  120. */
  121. if ((attr == NULL) || (attr->initialized == 0U)
  122. || (attr->stack == NULL) || (attr->stacksize == 0)) {
  123. return EINVAL;
  124. }
  125. pthread_mutex_lock(&pthread_pool_lock);
  126. for (pthread_num = 0;
  127. pthread_num < CONFIG_MAX_PTHREAD_COUNT; pthread_num++) {
  128. thread = &posix_thread_pool[pthread_num];
  129. if (thread->state == PTHREAD_TERMINATED) {
  130. thread->state = PTHREAD_JOINABLE;
  131. break;
  132. }
  133. }
  134. pthread_mutex_unlock(&pthread_pool_lock);
  135. if (pthread_num >= CONFIG_MAX_PTHREAD_COUNT) {
  136. return EAGAIN;
  137. }
  138. prio = posix_to_zephyr_priority(attr->priority, attr->schedpolicy);
  139. thread = &posix_thread_pool[pthread_num];
  140. /*
  141. * Ignore return value, as we know that Zephyr implementation
  142. * cannot fail.
  143. */
  144. (void)pthread_mutex_init(&thread->state_lock, NULL);
  145. (void)pthread_mutex_init(&thread->cancel_lock, NULL);
  146. pthread_mutex_lock(&thread->cancel_lock);
  147. thread->cancel_state = (1 << _PTHREAD_CANCEL_POS) & attr->flags;
  148. thread->cancel_pending = 0;
  149. pthread_mutex_unlock(&thread->cancel_lock);
  150. pthread_mutex_lock(&thread->state_lock);
  151. thread->state = attr->detachstate;
  152. pthread_mutex_unlock(&thread->state_lock);
  153. pthread_cond_init(&thread->state_cond, &cond_attr);
  154. sys_slist_init(&thread->key_list);
  155. *newthread = (pthread_t) k_thread_create(&thread->thread, attr->stack,
  156. attr->stacksize,
  157. (k_thread_entry_t)
  158. zephyr_thread_wrapper,
  159. (void *)arg, NULL,
  160. threadroutine, prio,
  161. (~K_ESSENTIAL & attr->flags),
  162. K_MSEC(attr->delayedstart));
  163. return 0;
  164. }
  165. /**
  166. * @brief Set cancelability State.
  167. *
  168. * See IEEE 1003.1
  169. */
  170. int pthread_setcancelstate(int state, int *oldstate)
  171. {
  172. struct posix_thread *pthread = (struct posix_thread *) pthread_self();
  173. if (state != PTHREAD_CANCEL_ENABLE &&
  174. state != PTHREAD_CANCEL_DISABLE) {
  175. return EINVAL;
  176. }
  177. *oldstate = pthread->cancel_state;
  178. pthread_mutex_lock(&pthread->cancel_lock);
  179. pthread->cancel_state = state;
  180. pthread_mutex_unlock(&pthread->cancel_lock);
  181. if (state == PTHREAD_CANCEL_ENABLE && pthread->cancel_pending) {
  182. pthread_exit((void *)PTHREAD_CANCELED);
  183. }
  184. return 0;
  185. }
  186. /**
  187. * @brief Cancel execution of a thread.
  188. *
  189. * See IEEE 1003.1
  190. */
  191. int pthread_cancel(pthread_t pthread)
  192. {
  193. struct posix_thread *thread = (struct posix_thread *) pthread;
  194. int cancel_state;
  195. if ((thread == NULL) || (thread->state == PTHREAD_TERMINATED)) {
  196. return ESRCH;
  197. }
  198. pthread_mutex_lock(&thread->cancel_lock);
  199. thread->cancel_pending = 1;
  200. cancel_state = thread->cancel_state;
  201. pthread_mutex_unlock(&thread->cancel_lock);
  202. if (cancel_state == PTHREAD_CANCEL_ENABLE) {
  203. pthread_mutex_lock(&thread->state_lock);
  204. if (thread->state == PTHREAD_DETACHED) {
  205. thread->state = PTHREAD_TERMINATED;
  206. } else {
  207. thread->retval = PTHREAD_CANCELED;
  208. thread->state = PTHREAD_EXITED;
  209. pthread_cond_broadcast(&thread->state_cond);
  210. }
  211. pthread_mutex_unlock(&thread->state_lock);
  212. k_thread_abort((k_tid_t) thread);
  213. }
  214. return 0;
  215. }
  216. /**
  217. * @brief Set thread scheduling policy and parameters.
  218. *
  219. * See IEEE 1003.1
  220. */
  221. int pthread_setschedparam(pthread_t pthread, int policy,
  222. const struct sched_param *param)
  223. {
  224. k_tid_t thread = (k_tid_t)pthread;
  225. int new_prio;
  226. if (thread == NULL) {
  227. return ESRCH;
  228. }
  229. if (policy != SCHED_RR && policy != SCHED_FIFO) {
  230. return EINVAL;
  231. }
  232. if (is_posix_prio_valid(param->sched_priority, policy) == false) {
  233. return EINVAL;
  234. }
  235. new_prio = posix_to_zephyr_priority(param->sched_priority, policy);
  236. k_thread_priority_set(thread, new_prio);
  237. return 0;
  238. }
  239. /**
  240. * @brief Initialise threads attribute object
  241. *
  242. * See IEEE 1003.1
  243. */
  244. int pthread_attr_init(pthread_attr_t *attr)
  245. {
  246. if (attr == NULL) {
  247. return ENOMEM;
  248. }
  249. (void)memcpy(attr, &init_pthread_attrs, sizeof(pthread_attr_t));
  250. return 0;
  251. }
  252. /**
  253. * @brief Get thread scheduling policy and parameters
  254. *
  255. * See IEEE 1003.1
  256. */
  257. int pthread_getschedparam(pthread_t pthread, int *policy,
  258. struct sched_param *param)
  259. {
  260. struct posix_thread *thread = (struct posix_thread *) pthread;
  261. uint32_t priority;
  262. if ((thread == NULL) || (thread->state == PTHREAD_TERMINATED)) {
  263. return ESRCH;
  264. }
  265. priority = k_thread_priority_get((k_tid_t) thread);
  266. param->sched_priority = zephyr_to_posix_priority(priority, policy);
  267. return 0;
  268. }
  269. /**
  270. * @brief Dynamic package initialization
  271. *
  272. * See IEEE 1003.1
  273. */
  274. int pthread_once(pthread_once_t *once, void (*init_func)(void))
  275. {
  276. pthread_mutex_lock(&pthread_key_lock);
  277. if (*once == PTHREAD_ONCE_INIT) {
  278. pthread_mutex_unlock(&pthread_key_lock);
  279. return 0;
  280. }
  281. init_func();
  282. *once = PTHREAD_ONCE_INIT;
  283. pthread_mutex_unlock(&pthread_key_lock);
  284. return 0;
  285. }
  286. /**
  287. * @brief Terminate calling thread.
  288. *
  289. * See IEEE 1003.1
  290. */
  291. void pthread_exit(void *retval)
  292. {
  293. struct posix_thread *self = (struct posix_thread *)pthread_self();
  294. pthread_key_obj *key_obj;
  295. pthread_thread_data *thread_spec_data;
  296. sys_snode_t *node_l;
  297. /* Make a thread as cancelable before exiting */
  298. pthread_mutex_lock(&self->cancel_lock);
  299. if (self->cancel_state == PTHREAD_CANCEL_DISABLE) {
  300. self->cancel_state = PTHREAD_CANCEL_ENABLE;
  301. }
  302. pthread_mutex_unlock(&self->cancel_lock);
  303. pthread_mutex_lock(&self->state_lock);
  304. if (self->state == PTHREAD_JOINABLE) {
  305. self->retval = retval;
  306. self->state = PTHREAD_EXITED;
  307. self->retval = retval;
  308. pthread_cond_broadcast(&self->state_cond);
  309. } else {
  310. self->state = PTHREAD_TERMINATED;
  311. }
  312. SYS_SLIST_FOR_EACH_NODE(&self->key_list, node_l) {
  313. thread_spec_data = (pthread_thread_data *)node_l;
  314. if (thread_spec_data != NULL) {
  315. key_obj = thread_spec_data->key;
  316. if (key_obj->destructor != NULL) {
  317. (key_obj->destructor)(thread_spec_data->spec_data);
  318. }
  319. }
  320. }
  321. pthread_mutex_unlock(&self->state_lock);
  322. k_thread_abort((k_tid_t)self);
  323. }
  324. /**
  325. * @brief Wait for a thread termination.
  326. *
  327. * See IEEE 1003.1
  328. */
  329. int pthread_join(pthread_t thread, void **status)
  330. {
  331. struct posix_thread *pthread = (struct posix_thread *) thread;
  332. int ret = 0;
  333. if (pthread == NULL) {
  334. return ESRCH;
  335. }
  336. if (pthread == pthread_self()) {
  337. return EDEADLK;
  338. }
  339. pthread_mutex_lock(&pthread->state_lock);
  340. if (pthread->state == PTHREAD_JOINABLE) {
  341. pthread_cond_wait(&pthread->state_cond, &pthread->state_lock);
  342. }
  343. if (pthread->state == PTHREAD_EXITED) {
  344. if (status != NULL) {
  345. *status = pthread->retval;
  346. }
  347. } else if (pthread->state == PTHREAD_DETACHED) {
  348. ret = EINVAL;
  349. } else {
  350. ret = ESRCH;
  351. }
  352. pthread_mutex_unlock(&pthread->state_lock);
  353. return ret;
  354. }
  355. /**
  356. * @brief Detach a thread.
  357. *
  358. * See IEEE 1003.1
  359. */
  360. int pthread_detach(pthread_t thread)
  361. {
  362. struct posix_thread *pthread = (struct posix_thread *) thread;
  363. int ret = 0;
  364. if (pthread == NULL) {
  365. return ESRCH;
  366. }
  367. pthread_mutex_lock(&pthread->state_lock);
  368. switch (pthread->state) {
  369. case PTHREAD_JOINABLE:
  370. pthread->state = PTHREAD_DETACHED;
  371. /* Broadcast the condition.
  372. * This will make threads waiting to join this thread continue.
  373. */
  374. pthread_cond_broadcast(&pthread->state_cond);
  375. break;
  376. case PTHREAD_EXITED:
  377. pthread->state = PTHREAD_TERMINATED;
  378. /* THREAD has already exited.
  379. * Pthread remained to provide exit status.
  380. */
  381. break;
  382. case PTHREAD_TERMINATED:
  383. ret = ESRCH;
  384. break;
  385. default:
  386. ret = EINVAL;
  387. break;
  388. }
  389. pthread_mutex_unlock(&pthread->state_lock);
  390. return ret;
  391. }
  392. /**
  393. * @brief Get detach state attribute in thread attributes object.
  394. *
  395. * See IEEE 1003.1
  396. */
  397. int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
  398. {
  399. if ((attr == NULL) || (attr->initialized == 0U)) {
  400. return EINVAL;
  401. }
  402. *detachstate = attr->detachstate;
  403. return 0;
  404. }
  405. /**
  406. * @brief Set detach state attribute in thread attributes object.
  407. *
  408. * See IEEE 1003.1
  409. */
  410. int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
  411. {
  412. if ((attr == NULL) || (attr->initialized == 0U) ||
  413. (detachstate != PTHREAD_CREATE_DETACHED &&
  414. detachstate != PTHREAD_CREATE_JOINABLE)) {
  415. return EINVAL;
  416. }
  417. attr->detachstate = detachstate;
  418. return 0;
  419. }
  420. /**
  421. * @brief Get scheduling policy attribute in Thread attributes.
  422. *
  423. * See IEEE 1003.1
  424. */
  425. int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy)
  426. {
  427. if ((attr == NULL) || (attr->initialized == 0U)) {
  428. return EINVAL;
  429. }
  430. *policy = attr->schedpolicy;
  431. return 0;
  432. }
  433. /**
  434. * @brief Set scheduling policy attribute in Thread attributes object.
  435. *
  436. * See IEEE 1003.1
  437. */
  438. int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy)
  439. {
  440. if ((attr == NULL) || (attr->initialized == 0U) ||
  441. (policy != SCHED_RR && policy != SCHED_FIFO)) {
  442. return EINVAL;
  443. }
  444. attr->schedpolicy = policy;
  445. return 0;
  446. }
  447. /**
  448. * @brief Get stack size attribute in thread attributes object.
  449. *
  450. * See IEEE 1003.1
  451. */
  452. int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
  453. {
  454. if ((attr == NULL) || (attr->initialized == 0U)) {
  455. return EINVAL;
  456. }
  457. *stacksize = attr->stacksize;
  458. return 0;
  459. }
  460. /**
  461. * @brief Get stack attributes in thread attributes object.
  462. *
  463. * See IEEE 1003.1
  464. */
  465. int pthread_attr_getstack(const pthread_attr_t *attr,
  466. void **stackaddr, size_t *stacksize)
  467. {
  468. if ((attr == NULL) || (attr->initialized == 0U)) {
  469. return EINVAL;
  470. }
  471. *stackaddr = attr->stack;
  472. *stacksize = attr->stacksize;
  473. return 0;
  474. }
  475. /**
  476. * @brief Get thread attributes object scheduling parameters.
  477. *
  478. * See IEEE 1003.1
  479. */
  480. int pthread_attr_getschedparam(const pthread_attr_t *attr,
  481. struct sched_param *schedparam)
  482. {
  483. if ((attr == NULL) || (attr->initialized == 0U)) {
  484. return EINVAL;
  485. }
  486. schedparam->sched_priority = attr->priority;
  487. return 0;
  488. }
  489. /**
  490. * @brief Destroy thread attributes object.
  491. *
  492. * See IEEE 1003.1
  493. */
  494. int pthread_attr_destroy(pthread_attr_t *attr)
  495. {
  496. if ((attr != NULL) && (attr->initialized != 0U)) {
  497. attr->initialized = false;
  498. return 0;
  499. }
  500. return EINVAL;
  501. }
  502. int pthread_setname_np(pthread_t thread, const char *name)
  503. {
  504. #ifdef CONFIG_THREAD_NAME
  505. k_tid_t kthread = (k_tid_t)thread;
  506. if (kthread == NULL) {
  507. return ESRCH;
  508. }
  509. if (name == NULL) {
  510. return EINVAL;
  511. }
  512. return k_thread_name_set(kthread, name);
  513. #else
  514. ARG_UNUSED(thread);
  515. ARG_UNUSED(name);
  516. return 0;
  517. #endif
  518. }
  519. int pthread_getname_np(pthread_t thread, char *name, size_t len)
  520. {
  521. #ifdef CONFIG_THREAD_NAME
  522. k_tid_t kthread = (k_tid_t)thread;
  523. if (kthread == NULL) {
  524. return ESRCH;
  525. }
  526. if (name == NULL) {
  527. return EINVAL;
  528. }
  529. memset(name, '\0', len);
  530. return k_thread_name_copy(kthread, name, len-1);
  531. #else
  532. ARG_UNUSED(thread);
  533. ARG_UNUSED(name);
  534. ARG_UNUSED(len);
  535. return 0;
  536. #endif
  537. }