bqb_acts.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. #include <stdio.h>
  2. #include <string.h>
  3. #include <errno.h>
  4. #include <stdbool.h>
  5. #include <kernel.h>
  6. #include <device.h>
  7. #include <init.h>
  8. #include <soc.h>
  9. #include <drivers/ipmsg.h>
  10. #include <sys/printk.h>
  11. #include <sys/byteorder.h>
  12. #include <drivers/uart.h>
  13. #include <drivers/uart_dma.h>
  14. #include <drivers/bluetooth/bt_drv.h>
  15. #ifdef CONFIG_PROPERTY
  16. #include <property_manager.h>
  17. #endif
  18. #if defined(CONFIG_BT_QC_TEST) || defined(CONFIG_BT_CTRL_RF_DEBUG)
  19. #define BQB_USE_UART_0 0
  20. #else
  21. #define BQB_USE_UART_0 1
  22. #endif
  23. #define BT_HCI_OP_VS_WRITE_BB_REG 0xfc8a
  24. #define BT_HCI_OP_VS_READ_BB_REG 0xfc8b
  25. #define BT_HCI_OP_VS_WRITE_RF_REG 0xfc8c
  26. #define BT_HCI_OP_VS_READ_RF_REG 0xfc8d
  27. #define BT_HCI_EVT_VS_READ_BB_REG_REPORT 0x80
  28. #define BT_HCI_EVT_VS_READ_RF_REG_REPORT 0x81
  29. #define BT_HCI_OP_VS_SET_APLL_TEMP_COMP 0xfc30
  30. #define BT_HCI_OP_VS_DO_APLL_TEMP_COMP 0xfc31
  31. struct bqb_bb_reg_report {
  32. uint32_t base_addr;
  33. uint32_t size;
  34. uint32_t result[0];
  35. } __packed;
  36. struct bqb_rf_reg_report {
  37. uint16_t base_addr;
  38. uint16_t size;
  39. uint16_t result[0];
  40. } __packed;
  41. #if BQB_USE_UART_0
  42. #define BQB_UART_STA UART0_STA
  43. #define BQB_UART_SET_BR 115200
  44. #define BLE_BQB_UART "UART_0"
  45. static struct device *uart_dev;
  46. #else
  47. #define BQB_UART_STA UART1_STA
  48. #define BLE_BQB_UART "UART_1"
  49. static struct device *uart_dev;
  50. #endif
  51. struct acts_bqb_data {
  52. uint8_t tx_data[128];
  53. uint8_t rx_data[128];
  54. uint8_t rx_type;
  55. uint8_t bqb_mode;
  56. uint8_t bqb_in_test;
  57. };
  58. static struct acts_bqb_data *bqb_info;
  59. static void bqb_vs_evt_handle(uint8_t *buf)
  60. {
  61. int i;
  62. struct bqb_bb_reg_report *bb_evt;
  63. struct bqb_rf_reg_report *rf_evt;
  64. uint8_t subevt = buf[0];
  65. buf++;
  66. if (subevt == BT_HCI_EVT_VS_READ_BB_REG_REPORT) {
  67. bb_evt = (void *)buf;
  68. for (i=0; i<bb_evt->size; i++) {
  69. printk("0x%08x: 0x%08x\n", bb_evt->base_addr + i*4, bb_evt->result[i]);
  70. }
  71. } else if (subevt == BT_HCI_EVT_VS_READ_RF_REG_REPORT) {
  72. rf_evt = (void *)buf;
  73. for (i=0; i<rf_evt->size; i++) {
  74. printk("0x%04x: 0x%04x\n", rf_evt->base_addr + i, rf_evt->result[i]);
  75. }
  76. } else {
  77. printk("[BQB] unknown vendor event\n");
  78. }
  79. }
  80. static void bqb_evt_handle(uint8_t *buf)
  81. {
  82. uint8_t evt = buf[0];
  83. uint8_t len = buf[1];
  84. if (len <= 0) {
  85. printk("[BQB] buf empty\n");
  86. }
  87. if (evt == 0xff) { //HCI Vendor Event
  88. bqb_vs_evt_handle(buf + HCI_EVT_HDR_SIZE);
  89. }
  90. }
  91. int bt_bqb_vs_write_bb_reg(uint32_t addr, uint32_t val)
  92. {
  93. if (!bqb_info) {
  94. return -ENOMEM;
  95. }
  96. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_WRITE_BB_REG;
  97. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_WRITE_BB_REG >> 8);
  98. bqb_info->tx_data[2] = 0x08;
  99. sys_put_le32(addr, &bqb_info->tx_data[3]);
  100. sys_put_le32(val, &bqb_info->tx_data[7]);
  101. return btdrv_send(HCI_CMD, bqb_info->tx_data, 11);
  102. }
  103. int bt_bqb_vs_read_bb_reg(uint32_t addr, uint8_t size)
  104. {
  105. if (!bqb_info) {
  106. return -ENOMEM;
  107. }
  108. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_READ_BB_REG;
  109. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_READ_BB_REG >> 8);
  110. bqb_info->tx_data[2] = 0x05;
  111. sys_put_le32(addr, &bqb_info->tx_data[3]);
  112. bqb_info->tx_data[7] = size;
  113. return btdrv_send(HCI_CMD, bqb_info->tx_data, 8);
  114. }
  115. int bt_bqb_vs_write_rf_reg(uint16_t addr, uint16_t val)
  116. {
  117. if (!bqb_info) {
  118. return -ENOMEM;
  119. }
  120. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_WRITE_RF_REG;
  121. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_WRITE_RF_REG >> 8);
  122. bqb_info->tx_data[2] = 0x04;
  123. sys_put_le16(addr, &bqb_info->tx_data[3]);
  124. sys_put_le16(val, &bqb_info->tx_data[5]);
  125. return btdrv_send(HCI_CMD, bqb_info->tx_data, 7);
  126. }
  127. int bt_bqb_vs_read_rf_reg(uint16_t addr, uint8_t size)
  128. {
  129. if (!bqb_info) {
  130. return -ENOMEM;
  131. }
  132. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_READ_RF_REG;
  133. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_READ_RF_REG >> 8);
  134. bqb_info->tx_data[2] = 0x03;
  135. sys_put_le16(addr, &bqb_info->tx_data[3]);
  136. bqb_info->tx_data[5] = size;
  137. return btdrv_send(HCI_CMD, bqb_info->tx_data, 6);
  138. }
  139. #define BT_NAME_LEN (32+1) /* 32(len) + 1(NULL) */
  140. static void bt_dut_mode_set_name(void)
  141. {
  142. #ifdef CONFIG_PROPERTY
  143. uint8_t *cfg_name = CFG_BT_NAME;
  144. int ret;
  145. ret = property_get(cfg_name, &bqb_info->tx_data[6], (BT_NAME_LEN-1));
  146. if (ret < 0) {
  147. return;
  148. }
  149. bqb_info->tx_data[0] = 0x52;
  150. bqb_info->tx_data[1] = 0x0c;
  151. bqb_info->tx_data[2] = (uint8_t)(ret + 3 + 2);
  152. bqb_info->tx_data[3] = 0x00;
  153. bqb_info->tx_data[4] = (uint8_t)(ret + 3);
  154. bqb_info->tx_data[5] = 0x09;
  155. bqb_info->tx_data[6 + ret] = 0x00;
  156. bqb_info->tx_data[6 + ret + 1] = 0x00;
  157. btdrv_send(HCI_CMD, bqb_info->tx_data, (uint16_t)(6 + ret + 2));/* HCI set name */
  158. k_sleep(K_MSEC(20));
  159. #endif
  160. }
  161. void bt_dut_mode(void)
  162. {
  163. if (!bqb_info) {
  164. return;
  165. }
  166. bqb_info->tx_data[0] = 0x03;
  167. bqb_info->tx_data[1] = 0x0c; /* ogf: baseband */
  168. bqb_info->tx_data[2] = 0x00; /* len */
  169. btdrv_send(HCI_CMD, bqb_info->tx_data, 3); /* HCI reset */
  170. k_sleep(K_MSEC(50));
  171. bt_dut_mode_set_name();
  172. bqb_info->tx_data[0] = 0x1e; /* write inquiry scan activity */
  173. bqb_info->tx_data[1] = 0x0c;
  174. bqb_info->tx_data[2] = 0x04;
  175. bqb_info->tx_data[3] = 0x00;
  176. bqb_info->tx_data[4] = 0x02;
  177. bqb_info->tx_data[5] = 0x60;
  178. bqb_info->tx_data[6] = 0x00;
  179. btdrv_send(HCI_CMD, bqb_info->tx_data, 7);
  180. k_sleep(K_MSEC(20));
  181. bqb_info->tx_data[0] = 0x1c; /* write page scan activity */
  182. bqb_info->tx_data[1] = 0x0c;
  183. bqb_info->tx_data[2] = 0x04;
  184. bqb_info->tx_data[3] = 0x00;
  185. bqb_info->tx_data[4] = 0x04;
  186. bqb_info->tx_data[5] = 0x80;
  187. bqb_info->tx_data[6] = 0x00;
  188. btdrv_send(HCI_CMD, bqb_info->tx_data, 7);
  189. k_sleep(K_MSEC(20));
  190. bqb_info->tx_data[0] = 0x43; /* write inquiry scan type */
  191. bqb_info->tx_data[1] = 0x0c;
  192. bqb_info->tx_data[2] = 0x01;
  193. bqb_info->tx_data[3] = 0x01;
  194. btdrv_send(HCI_CMD, bqb_info->tx_data, 4);
  195. k_sleep(K_MSEC(20));
  196. bqb_info->tx_data[0] = 0x47; /* write page scan type */
  197. bqb_info->tx_data[1] = 0x0c;
  198. bqb_info->tx_data[2] = 0x01;
  199. bqb_info->tx_data[3] = 0x01;
  200. btdrv_send(HCI_CMD, bqb_info->tx_data, 4);
  201. k_sleep(K_MSEC(20));
  202. bqb_info->tx_data[0] = 0x1a;
  203. bqb_info->tx_data[1] = 0x0c;
  204. bqb_info->tx_data[2] = 0x01;
  205. bqb_info->tx_data[3] = 0x03;
  206. btdrv_send(HCI_CMD, bqb_info->tx_data, 4); /* HCI write scan */
  207. k_sleep(K_MSEC(20));
  208. bqb_info->tx_data[0] = 0x05;
  209. bqb_info->tx_data[1] = 0x0c;
  210. bqb_info->tx_data[2] = 0x03;
  211. bqb_info->tx_data[3] = 0x02;
  212. bqb_info->tx_data[4] = 0x00;
  213. bqb_info->tx_data[5] = 0x02;
  214. btdrv_send(HCI_CMD, bqb_info->tx_data, 6); /* HCI set event filter */
  215. k_sleep(K_MSEC(20));
  216. bqb_info->tx_data[0] = 0x03;
  217. bqb_info->tx_data[1] = 0x18; /* ogf: test */
  218. bqb_info->tx_data[2] = 0x00;
  219. btdrv_send(HCI_CMD, bqb_info->tx_data, 3); /* HCI dut mode */
  220. k_sleep(K_MSEC(20));
  221. }
  222. static void bqb_uart_send(uint8_t *tx_data, uint16_t len)
  223. {
  224. int i;
  225. if (!bqb_info) {
  226. return;
  227. }
  228. for (i = 0; i < len; i++) {
  229. uart_poll_out(uart_dev, tx_data[i]);
  230. }
  231. }
  232. static int bqb_uart_tx_hci(uint8_t type, uint8_t *data)
  233. {
  234. uint16_t len;
  235. switch (type) {
  236. case HCI_ACL:
  237. len = (data[3]<<8 | data[2]) + HCI_ACL_HDR_SIZE;
  238. break;
  239. case HCI_SCO:
  240. len = data[2] + HCI_SCO_HDR_SIZE;
  241. break;
  242. case HCI_EVT:
  243. len = data[1] + HCI_EVT_HDR_SIZE;
  244. break;
  245. case HCI_ISO:
  246. len = (data[3]<<8 | data[2]) + HCI_ISO_HDR_SIZE;
  247. break;
  248. default:
  249. return -EINVAL;
  250. }
  251. uart_poll_out(uart_dev, type);
  252. bqb_uart_send(data, len);
  253. return 0;
  254. }
  255. static uint16_t bqb_uart_read(uint8_t *rx_data, uint16_t size)
  256. {
  257. uint16_t i;
  258. if (!bqb_info) {
  259. return 0;
  260. }
  261. for (i = 0; i < size; i++) {
  262. uart_poll_in(uart_dev, &rx_data[i]);
  263. }
  264. return i;
  265. }
  266. static void bqb_uart_rx_hci(uint8_t *buf)
  267. {
  268. uint8_t type = 0;
  269. bool has_hdr = false;
  270. uint16_t len, rd_len, total = 0;
  271. uart_poll_in(uart_dev, &type);
  272. //printk("read type: %d\n", type);
  273. switch (type) {
  274. case HCI_CMD:
  275. rd_len = bqb_uart_read(buf, HCI_CMD_HDR_SIZE);
  276. if (rd_len == HCI_CMD_HDR_SIZE) {
  277. has_hdr = true;
  278. len = buf[2];
  279. }
  280. break;
  281. case HCI_ACL:
  282. rd_len = bqb_uart_read(buf, HCI_ACL_HDR_SIZE);
  283. if (rd_len == HCI_ACL_HDR_SIZE) {
  284. has_hdr = true;
  285. len = buf[3]<<8 | buf[2];
  286. }
  287. break;
  288. case HCI_SCO:
  289. rd_len = bqb_uart_read(buf, HCI_SCO_HDR_SIZE);
  290. if (rd_len == HCI_SCO_HDR_SIZE) {
  291. has_hdr = true;
  292. len = buf[2];
  293. }
  294. break;
  295. case HCI_ISO:
  296. rd_len = bqb_uart_read(buf, HCI_ISO_HDR_SIZE);
  297. if (rd_len == HCI_ISO_HDR_SIZE) {
  298. has_hdr = true;
  299. len = buf[3]<<8 | buf[2];
  300. }
  301. break;
  302. default:
  303. printk("unknown type: %d\n", type);
  304. break;
  305. }
  306. //printk("read hdr: %d %d\n", rd_len, len);
  307. if (!has_hdr) {
  308. printk("uart rx incomplete\n");
  309. return;
  310. }
  311. total += rd_len;
  312. rd_len = bqb_uart_read(buf+rd_len, len);
  313. if (rd_len != len) {
  314. printk("uart rx incomplete\n");
  315. return;
  316. }
  317. total += rd_len;
  318. btdrv_send(type, buf, total);
  319. }
  320. static void bqb_uart_isr(const struct device *dev, void *user_data)
  321. {
  322. ARG_UNUSED(dev);
  323. ARG_UNUSED(user_data);
  324. if (uart_irq_rx_ready(uart_dev)) {
  325. if (bqb_info) {
  326. bqb_uart_rx_hci(bqb_info->tx_data);
  327. }
  328. }
  329. /* Clear the interrupt */
  330. sys_write32(0x1, BQB_UART_STA);
  331. }
  332. #if BQB_USE_UART_0
  333. #ifdef CONFIG_UART_CONSOLE
  334. static int _stdout_hook_null(int c)
  335. {
  336. (void)(c);
  337. return EOF;
  338. }
  339. #endif
  340. static int bqb_uart_init(void)
  341. {
  342. struct uart_config cfg;
  343. uart_dev = (struct device *)device_get_binding(BLE_BQB_UART);
  344. if (uart_dev == NULL) {
  345. printk("cannot get device %s\n", BLE_BQB_UART);
  346. return -ENODEV;
  347. }
  348. #ifdef CONFIG_UART_CONSOLE
  349. extern void __printk_hook_install(int (*fn)(int));
  350. extern void __stdout_hook_install(int (*fn)(int));
  351. __printk_hook_install(_stdout_hook_null);
  352. __stdout_hook_install(_stdout_hook_null);
  353. #endif
  354. uart_config_get(uart_dev, &cfg);
  355. cfg.baudrate = BQB_UART_SET_BR;
  356. uart_configure(uart_dev, &cfg);
  357. #ifdef CONFIG_ACTIONS_PRINTK_DMA
  358. uart_dma_send_stop(uart_dev);
  359. uart_fifo_switch(uart_dev, 1, UART_FIFO_TYPE_CPU);
  360. uart_dma_receive_stop(uart_dev);
  361. uart_fifo_switch(uart_dev, 0, UART_FIFO_TYPE_CPU);
  362. #endif
  363. uart_irq_rx_disable(uart_dev);
  364. uart_irq_callback_set(uart_dev, bqb_uart_isr);
  365. uart_irq_rx_enable(uart_dev);
  366. return 0;
  367. }
  368. #else
  369. #ifdef CONFIG_BOARD_LARK_DVB_EARPHONE
  370. #define BT_UART_MFP_SEL 6
  371. static const struct acts_pin_config bqb_pin_cfg[] = {
  372. {12, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP},
  373. {13, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP},
  374. };
  375. #else
  376. #define BT_UART_MFP_SEL 6
  377. static const struct acts_pin_config bqb_pin_cfg[] = {
  378. {16, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP},
  379. {17, BT_UART_MFP_SEL | GPIO_CTL_PADDRV_LEVEL(1) | GPIO_CTL_PULLUP},
  380. };
  381. #endif
  382. static int bqb_uart_init(void)
  383. {
  384. acts_pinmux_setup_pins(bqb_pin_cfg, ARRAY_SIZE(bqb_pin_cfg));
  385. uart_dev = (struct device *)device_get_binding(BLE_BQB_UART);
  386. if (uart_dev == NULL) {
  387. printk("cannot get device %s\n", BLE_BQB_UART);
  388. return -ENODEV;
  389. }
  390. uart_irq_callback_set(uart_dev, bqb_uart_isr);
  391. uart_irq_rx_enable(uart_dev);
  392. return 0;
  393. }
  394. #endif
  395. static void *bqb_init_info(void)
  396. {
  397. uint32_t id;
  398. struct acts_bqb_data *bqb_info;
  399. id = ipmsg_create(RBUF_RAW, sizeof(struct acts_bqb_data));
  400. if (id == 0) {
  401. return NULL;
  402. }
  403. rbuf_t *rbuf = RBUF_FR_OF(id);
  404. bqb_info = (void *)RBUF_FR_OF(rbuf->buf_off);
  405. memset(bqb_info, 0, sizeof(struct acts_bqb_data));
  406. return bqb_info;
  407. }
  408. static uint8_t *bqb_get_buf(uint8_t type, uint8_t evt, uint16_t exp_len)
  409. {
  410. if (bqb_info) {
  411. bqb_info->rx_type = type;
  412. return bqb_info->rx_data;
  413. } else {
  414. return NULL;
  415. }
  416. }
  417. static int bqb_recv(uint16_t len)
  418. {
  419. if (bqb_info) {
  420. if (bqb_info->bqb_mode != 0) {
  421. bqb_uart_tx_hci(bqb_info->rx_type, bqb_info->rx_data);
  422. }
  423. if (bqb_info->rx_type == HCI_EVT) {
  424. bqb_evt_handle(bqb_info->rx_data);
  425. }
  426. }
  427. return 0;
  428. }
  429. #ifdef CONFIG_BT_CTRL_DEBUG
  430. #define BT_ANT_SW_SEL 23
  431. static const struct acts_pin_config pin_cfg_le_bqb_dbg[] = {
  432. {56, BT_ANT_SW_SEL | GPIO_CTL_GPIO_OUTEN},
  433. {57, BT_ANT_SW_SEL | GPIO_CTL_GPIO_OUTEN},
  434. };
  435. #endif
  436. static const btdrv_hci_cb_t cb = {
  437. .get_buf = bqb_get_buf,
  438. .recv = bqb_recv,
  439. };
  440. /* BQB mode [0:BR BQB Test, 1:BLE BQB Test, 2:BR/BLE dual BQB Test] */
  441. int bqb_init(int bqb_mode)
  442. {
  443. int err, need_uart;
  444. if (bqb_mode > 2) {
  445. printk("Error bqb_mode %d\n", bqb_mode);
  446. return -EINVAL;
  447. }
  448. bqb_info = bqb_init_info();
  449. if (!bqb_info) {
  450. printk("Error bqb_init_info failed!\n");
  451. return -ENOMEM;
  452. }
  453. bqb_info->bqb_in_test = 1;
  454. bqb_info->bqb_mode = (uint8_t)bqb_mode;
  455. need_uart = (bqb_info->bqb_mode == 0) ? 0 : 1;
  456. err = btdrv_init((btdrv_hci_cb_t *)&cb);
  457. if (err) {
  458. return -EINVAL;
  459. }
  460. if (need_uart) {
  461. err = bqb_uart_init();
  462. if (err) {
  463. printk("bqb uart init failed %d\n", err);
  464. return -EINVAL;
  465. }
  466. }
  467. #ifdef CONFIG_BT_CTRL_DEBUG
  468. if (bqb_info->bqb_mode != 0) {
  469. acts_pinmux_setup_pins(pin_cfg_le_bqb_dbg, ARRAY_SIZE(pin_cfg_le_bqb_dbg));
  470. }
  471. #endif
  472. if (bqb_info->bqb_mode != 1) {
  473. bt_dut_mode();
  474. }
  475. printk("BQB mode %d [0:BR BQB Test, 1:BLE BQB Test, 2:BR/BLE dual BQB Test]\n", bqb_mode);
  476. return 0;
  477. }
  478. bool bt_bqb_is_in_test(void)
  479. {
  480. if (bqb_info) {
  481. return bqb_info->bqb_in_test ? true : false;
  482. } else {
  483. return false;
  484. }
  485. }
  486. int bt_bqb_vs_set_apll_temp_comp(uint8_t enable)
  487. {
  488. if(!bt_bqb_is_in_test()){
  489. return -EIO;
  490. }
  491. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_SET_APLL_TEMP_COMP;
  492. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_SET_APLL_TEMP_COMP >> 8);
  493. bqb_info->tx_data[2] = 0x01;
  494. bqb_info->tx_data[3] = enable;
  495. return btdrv_send(HCI_CMD, bqb_info->tx_data, 4);
  496. }
  497. int bt_bqb_vs_do_apll_temp_comp(void)
  498. {
  499. if(!bt_bqb_is_in_test()){
  500. return -EIO;
  501. }
  502. bqb_info->tx_data[0] = (uint8_t)BT_HCI_OP_VS_DO_APLL_TEMP_COMP;
  503. bqb_info->tx_data[1] = (uint8_t)(BT_HCI_OP_VS_DO_APLL_TEMP_COMP >> 8);
  504. bqb_info->tx_data[2] = 0x0;
  505. return btdrv_send(HCI_CMD, bqb_info->tx_data, 3);
  506. }