acts_hrtimer.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. /********************************************************************************
  2. * USDK(ZS283A)
  3. * Module: SYSTEM
  4. * Copyright(c) 2003-2017 Actions Semiconductor,
  5. * All Rights Reserved.
  6. *
  7. * History:
  8. * <author> <time> <version > <desc>
  9. * wuyufan 2019-3-29-1:27:29 1.0 build this file
  10. ********************************************************************************/
  11. /*!
  12. * \file hrtimer.c
  13. * \brief
  14. * \author
  15. * \version 1.0
  16. * \date 2019-3-29-1:27:29
  17. *******************************************************************************/
  18. #include <device.h>
  19. #include <init.h>
  20. #include <soc.h>
  21. #include <drivers/hrtimer.h>
  22. #include <string.h>
  23. #define MAX_TIMER_COUNT TIMER_MAX_CYCLES_VALUE
  24. struct hrtimer_ctx
  25. {
  26. timer_register_t *timer_register;
  27. sys_dlist_t hrtimer_q;
  28. uint32_t timer_load_val;
  29. uint64_t current_jiffies;
  30. uint64_t adjust_jiffies;
  31. };
  32. static struct hrtimer_ctx g_hrtimer_ctx;
  33. //#define HRTIMER_DEBUG
  34. #ifdef HRTIMER_DEBUG
  35. #define TT_DEBUG(fmt, ...) printk("[%d]" fmt, k_uptime_get_32(), ##__VA_ARGS__)
  36. #else
  37. #define TT_DEBUG(fmt, ...)
  38. #endif
  39. static inline struct hrtimer_ctx *_get_hrtimer_ctx(void)
  40. {
  41. return &g_hrtimer_ctx;
  42. }
  43. static inline struct hrtimer *_find_first_hrtimer_to_unpend(void)
  44. {
  45. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  46. return (struct hrtimer *)sys_dlist_peek_head(&ctx->hrtimer_q);
  47. }
  48. static inline struct hrtimer *_find_next_hrtimer(struct hrtimer *ttimer)
  49. {
  50. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  51. return (struct hrtimer *)sys_dlist_peek_next(&ctx->hrtimer_q, (void *)ttimer);
  52. }
  53. static inline uint64_t _hrtimer_us_to_tick(uint32_t m)
  54. {
  55. return ((uint64_t)m * (uint64_t)CONFIG_HOSC_CLK_MHZ);
  56. }
  57. static void _hrtimer_reload(timer_register_t *timer_register, uint32_t value)
  58. {
  59. if (value > MAX_TIMER_COUNT) {
  60. value = MAX_TIMER_COUNT;
  61. }
  62. //clear pending stop timer
  63. timer_register->ctl = (1 << T0_CTL_ZIPD);
  64. timer_reg_wait();
  65. timer_register->val = value;
  66. // start timer, not reload
  67. timer_register->ctl = 0x22;
  68. }
  69. static uint64_t _get_current_jiffies(void)
  70. {
  71. uint32_t val;
  72. uint32_t flags;
  73. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  74. flags = irq_lock();
  75. /*hw timer bug, we should check*/
  76. if (ctx->timer_load_val > ctx->timer_register->cnt) {
  77. val = ctx->timer_load_val - ctx->timer_register->cnt;
  78. } else {
  79. val = 0;
  80. }
  81. if (ctx->adjust_jiffies < ctx->current_jiffies + (uint64_t)val) {
  82. ctx->adjust_jiffies = ctx->current_jiffies + (uint64_t)val;
  83. }
  84. irq_unlock(flags);
  85. return ctx->adjust_jiffies;
  86. }
  87. static void _update_expires_to_timer(uint64_t expires)
  88. {
  89. uint32_t val;
  90. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  91. if (expires <= ctx->current_jiffies || expires > (ctx->current_jiffies + MAX_TIMER_COUNT)) return;
  92. /*hw timer bug, we should check*/
  93. if (ctx->timer_load_val > ctx->timer_register->cnt) {
  94. val = ctx->timer_load_val - ctx->timer_register->cnt;
  95. } else {
  96. val = 0;
  97. }
  98. if (expires > ctx->current_jiffies + val) {
  99. val = (uint32_t) (expires - ctx->current_jiffies - val);
  100. } else {
  101. val = 1;
  102. }
  103. ctx->timer_load_val = expires - ctx->current_jiffies;
  104. _hrtimer_reload(ctx->timer_register, val);
  105. }
  106. static void _hrtimer_remove(struct hrtimer *timer)
  107. {
  108. u32_t irq_flags;
  109. struct hrtimer *in_q, *next;
  110. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  111. irq_flags = irq_lock();
  112. SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&ctx->hrtimer_q, in_q, next, node) {
  113. if (timer == in_q) {
  114. sys_dlist_remove(&in_q->node);
  115. irq_unlock(irq_flags);
  116. return;
  117. }
  118. }
  119. irq_unlock(irq_flags);
  120. }
  121. static void _hrtimer_insert(struct hrtimer *ttimer,
  122. u32_t expiry_time)
  123. {
  124. u32_t irq_flags;
  125. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  126. sys_dlist_t *thread_timer_q = &ctx->hrtimer_q;
  127. struct hrtimer *in_q;
  128. irq_flags = irq_lock();
  129. SYS_DLIST_FOR_EACH_CONTAINER(thread_timer_q, in_q, node) {
  130. if (ttimer->expiry_time < in_q->expiry_time) {
  131. sys_dlist_insert(&in_q->node,
  132. &ttimer->node);
  133. goto check_queue;
  134. }
  135. }
  136. sys_dlist_append(thread_timer_q, &ttimer->node);
  137. check_queue:
  138. if(ttimer == _find_first_hrtimer_to_unpend()){
  139. _update_expires_to_timer(ttimer->expiry_time);
  140. }
  141. irq_unlock(irq_flags);
  142. }
  143. void hrtimer_init(struct hrtimer *ttimer, hrtimer_expiry_t expiry_fn,
  144. void *expiry_fn_arg)
  145. {
  146. __ASSERT(ttimer != NULL, "");
  147. TT_DEBUG("timer %p: init func %p arg 0x%p\n", ttimer,
  148. ttimer->expiry_fn, ttimer->expiry_fn_arg);
  149. /* remove hrtimer if already submited */
  150. _hrtimer_remove(ttimer);
  151. memset(ttimer, 0, sizeof(struct hrtimer));
  152. ttimer->expiry_time = ULLONG_MAX;
  153. ttimer->expiry_fn = expiry_fn;
  154. ttimer->expiry_fn_arg = expiry_fn_arg;
  155. sys_dlist_init(&ttimer->node);
  156. }
  157. void hrtimer_start(struct hrtimer *ttimer, s32_t duration, s32_t period)
  158. {
  159. uint64_t current_jiffies, ticks;
  160. __ASSERT((ttimer != NULL) && (ttimer->expiry_fn != NULL), "");
  161. _hrtimer_remove(ttimer);
  162. current_jiffies = _get_current_jiffies();
  163. ticks = _hrtimer_us_to_tick(duration);
  164. ttimer->expiry_time = current_jiffies + ticks;
  165. ttimer->period = period;
  166. ttimer->duration = duration;
  167. TT_DEBUG("timer %p: start duration %d period %d\n",
  168. ttimer, duration, period);
  169. _hrtimer_insert(ttimer, ttimer->expiry_time);
  170. }
  171. void hrtimer_stop(struct hrtimer *ttimer)
  172. {
  173. u32_t flags;
  174. struct hrtimer *next;
  175. __ASSERT(ttimer != NULL, "");
  176. TT_DEBUG("timer %p: stop\n", ttimer);
  177. flags = irq_lock();
  178. /* check if the current timer is the mininum one and then update the current timer */
  179. if(ttimer == _find_first_hrtimer_to_unpend()){
  180. next = _find_next_hrtimer(ttimer);
  181. if(next){
  182. _update_expires_to_timer(next->expiry_time);
  183. }
  184. }
  185. _hrtimer_remove(ttimer);
  186. irq_unlock(flags);
  187. }
  188. bool hrtimer_is_running(struct hrtimer *ttimer)
  189. {
  190. struct hrtimer *in_q;
  191. bool result = false;
  192. u32_t flags;
  193. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  194. __ASSERT(ttimer != NULL, "");
  195. flags = irq_lock();
  196. SYS_DLIST_FOR_EACH_CONTAINER(&ctx->hrtimer_q, in_q, node) {
  197. if (ttimer == in_q) {
  198. result = true;
  199. break;
  200. }
  201. }
  202. irq_unlock(flags);
  203. return result;
  204. }
  205. void hrtimer_handle_expired(void)
  206. {
  207. struct hrtimer_ctx *ctx;
  208. struct hrtimer *tmpNode;
  209. sys_dlist_t call_and_del;
  210. struct hrtimer *cur;
  211. u32_t key ;
  212. ctx = _get_hrtimer_ctx();
  213. key = irq_lock();
  214. sys_dlist_init(&call_and_del);
  215. ctx->current_jiffies += ctx->timer_load_val;
  216. SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&ctx->hrtimer_q, cur, tmpNode, node){
  217. if (cur->expiry_time > ctx->current_jiffies) {
  218. break;
  219. }
  220. sys_dlist_remove(&cur->node);
  221. sys_dlist_append(&call_and_del, &cur->node);
  222. }
  223. // amend timer load value to be the latest timer node value
  224. if (sys_dlist_is_empty(&(ctx->hrtimer_q))\
  225. || (cur && cur->expiry_time > (ctx->current_jiffies + MAX_TIMER_COUNT))) {
  226. ctx->timer_load_val = MAX_TIMER_COUNT;
  227. } else {
  228. if(cur)
  229. ctx->timer_load_val = cur->expiry_time - ctx->current_jiffies;
  230. else
  231. ctx->timer_load_val = MAX_TIMER_COUNT;
  232. }
  233. _hrtimer_reload(ctx->timer_register, ctx->timer_load_val);
  234. SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&call_and_del, cur, tmpNode, node){
  235. // timer is expired and start to excute timer function
  236. sys_dlist_remove(&cur->node);
  237. // check if the timer is period or not
  238. if (cur->period != 0) {
  239. // if is period timer, add the timer into the queue again
  240. hrtimer_start(cur, cur->period, cur->period);
  241. }
  242. TT_DEBUG("timer %p: call %p\n", cur, cur->expiry_fn);
  243. irq_unlock(key);
  244. //sys_irq_unlock(&flags);
  245. /* invoke thread timer expiry function */
  246. cur->expiry_fn(cur, cur->expiry_fn_arg);
  247. key = irq_lock();
  248. //sys_irq_lock(&flags);
  249. }
  250. irq_unlock(key);
  251. // sys_irq_unlock(&flags);
  252. }
  253. static int hrtimer_runtime_init(const struct device *arg)
  254. {
  255. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  256. ARG_UNUSED(arg);
  257. #ifdef CONFIG_SOC_SERIES_LEOPARD
  258. acts_clock_peripheral_enable(CLOCK_ID_TIMER1);
  259. acts_reset_peripheral(CLOCK_ID_TIMER1);
  260. timer_reg_wait();
  261. #endif
  262. sys_write32(0x0, CMU_TIMER1CLK); //select hosc
  263. ctx->timer_register = (timer_register_t *)T1_CTL;
  264. ctx->timer_load_val = MAX_TIMER_COUNT;
  265. sys_dlist_init(&ctx->hrtimer_q);
  266. _hrtimer_reload(ctx->timer_register, ctx->timer_load_val);
  267. IRQ_CONNECT(IRQ_ID_TIMER1, 0, hrtimer_handle_expired, 0, 0);
  268. irq_enable(IRQ_ID_TIMER1);
  269. return 0;
  270. }
  271. #if defined(CONFIG_PM_DEVICE)
  272. #define MUTIPLE soc_rc32K_mutiple_hosc()
  273. #define S3_SOURCE (0x4)
  274. static int hrtimer_runtime_resume(void)
  275. {
  276. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  277. struct hrtimer *tmpNode;
  278. struct hrtimer *cur;
  279. uint32_t val;
  280. if (sys_dlist_is_empty(&(ctx->hrtimer_q))) {
  281. ctx->timer_register->ctl = 0x22;
  282. return 0;
  283. }
  284. if (ctx->timer_register->ctl & 0x1) { //irq pending
  285. sys_write32(0x0, CMU_TIMER1CLK); //select hosc
  286. return 0;
  287. }
  288. val = ctx->timer_register->val - ctx->timer_register->cnt;
  289. val = val*MUTIPLE;
  290. if (ctx->adjust_jiffies < ctx->current_jiffies + (uint64_t)val) {
  291. ctx->adjust_jiffies = ctx->current_jiffies + (uint64_t)val;
  292. }
  293. ctx->current_jiffies = ctx->adjust_jiffies;
  294. SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&ctx->hrtimer_q, cur, tmpNode, node) {
  295. if (cur->expiry_time > ctx->current_jiffies) {
  296. ctx->timer_load_val = cur->expiry_time - ctx->current_jiffies;
  297. break;
  298. }
  299. }
  300. sys_write32(0x0, CMU_TIMER1CLK); //select hosc
  301. _hrtimer_reload(ctx->timer_register, ctx->timer_load_val);
  302. return 0;
  303. }
  304. static void hrtimer_runtime_suspend(void)
  305. {
  306. struct hrtimer_ctx *ctx = _get_hrtimer_ctx();
  307. struct hrtimer *tmpNode;
  308. struct hrtimer *cur;
  309. uint32_t load_val;
  310. ctx->current_jiffies = _get_current_jiffies();
  311. if (sys_dlist_is_empty(&(ctx->hrtimer_q))){
  312. ctx->timer_register->ctl = 0;
  313. return;
  314. }
  315. SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&ctx->hrtimer_q, cur, tmpNode, node){
  316. if (cur->expiry_time > ctx->current_jiffies) {
  317. ctx->timer_load_val = cur->expiry_time - ctx->current_jiffies;
  318. break;
  319. }
  320. }
  321. load_val = ctx->timer_load_val / MUTIPLE;
  322. sys_write32(S3_SOURCE, CMU_TIMER1CLK); //select RC4M
  323. _hrtimer_reload(ctx->timer_register, load_val);
  324. return;
  325. }
  326. int hrtimer_pm_ctrl(const struct device *device, enum pm_device_action action)
  327. {
  328. if (action == PM_DEVICE_ACTION_RESUME){
  329. hrtimer_runtime_resume();
  330. } else if (action == PM_DEVICE_ACTION_SUSPEND){
  331. hrtimer_runtime_suspend();
  332. }
  333. return 0;
  334. }
  335. SYS_DEVICE_DEFINE("hrtimer", hrtimer_runtime_init, hrtimer_pm_ctrl,
  336. PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
  337. #else
  338. SYS_INIT(hrtimer_runtime_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
  339. #endif