123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /*
- * Copyright (c) 2018 Intel Corporation
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- /* Our SDK/toolchains integration seems to be inconsistent about
- * whether they expose alloca.h or not. On gcc it's a moot point as
- * it's always builtin.
- */
- #ifdef __GNUC__
- #ifndef alloca
- #define alloca __builtin_alloca
- #endif
- #else
- #include <alloca.h>
- #endif
- /**
- * @file
- * @brief Red/Black balanced tree data structure
- *
- * This implements an intrusive balanced tree that guarantees
- * O(log2(N)) runtime for all operations and amortized O(1) behavior
- * for creation and destruction of whole trees. The algorithms and
- * naming are conventional per existing academic and didactic
- * implementations, c.f.:
- *
- * https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
- *
- * The implementation is size-optimized to prioritize runtime memory
- * usage. The data structure is intrusive, which is to say the struct
- * rbnode handle is intended to be placed in a separate struct the
- * same way other such structures (e.g. Zephyr's dlist list) and
- * requires no data pointer to be stored in the node. The color bit
- * is unioned with a pointer (fairly common for such libraries). Most
- * notably, there is no "parent" pointer stored in the node, the upper
- * structure of the tree being generated dynamically via a stack as
- * the tree is recursed. So the overall memory overhead of a node is
- * just two pointers, identical with a doubly-linked list.
- */
- #ifndef ZEPHYR_INCLUDE_SYS_RB_H_
- #define ZEPHYR_INCLUDE_SYS_RB_H_
- #include <stdbool.h>
- #include <stdint.h>
- struct rbnode {
- struct rbnode *children[2];
- };
- /* Theoretical maximum depth of tree based on pointer size. If memory
- * is filled with 2-pointer nodes, and the tree can be twice as a
- * packed binary tree, plus root... Works out to 59 entries for 32
- * bit pointers and 121 at 64 bits.
- */
- #define Z_TBITS(t) ((sizeof(t)) < 8 ? 2 : 3)
- #define Z_PBITS(t) (8 * sizeof(t))
- #define Z_MAX_RBTREE_DEPTH (2 * (Z_PBITS(int *) - Z_TBITS(int *) - 1) + 1)
- /**
- * @defgroup rbtree_apis Balanced Red/Black Tree
- * @ingroup datastructure_apis
- * @{
- */
- /**
- * @typedef rb_lessthan_t
- * @brief Red/black tree comparison predicate
- *
- * Compares the two nodes and returns true if node A is strictly less
- * than B according to the tree's sorting criteria, false otherwise.
- *
- * Note that during insert, the new node being inserted will always be
- * "A", where "B" is the existing node within the tree against which
- * it is being compared. This trait can be used (with care!) to
- * implement "most/least recently added" semantics between nodes which
- * would otherwise compare as equal.
- */
- typedef bool (*rb_lessthan_t)(struct rbnode *a, struct rbnode *b);
- struct rbtree {
- struct rbnode *root;
- rb_lessthan_t lessthan_fn;
- int max_depth;
- #ifdef CONFIG_MISRA_SANE
- struct rbnode *iter_stack[Z_MAX_RBTREE_DEPTH];
- unsigned char iter_left[Z_MAX_RBTREE_DEPTH];
- #endif
- };
- typedef void (*rb_visit_t)(struct rbnode *node, void *cookie);
- struct rbnode *z_rb_child(struct rbnode *node, uint8_t side);
- int z_rb_is_black(struct rbnode *node);
- #ifndef CONFIG_MISRA_SANE
- void z_rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie);
- #endif
- struct rbnode *z_rb_get_minmax(struct rbtree *tree, uint8_t side);
- /**
- * @brief Insert node into tree
- */
- void rb_insert(struct rbtree *tree, struct rbnode *node);
- /**
- * @brief Remove node from tree
- */
- void rb_remove(struct rbtree *tree, struct rbnode *node);
- /**
- * @brief Returns the lowest-sorted member of the tree
- */
- static inline struct rbnode *rb_get_min(struct rbtree *tree)
- {
- return z_rb_get_minmax(tree, 0U);
- }
- /**
- * @brief Returns the highest-sorted member of the tree
- */
- static inline struct rbnode *rb_get_max(struct rbtree *tree)
- {
- return z_rb_get_minmax(tree, 1U);
- }
- /**
- * @brief Returns true if the given node is part of the tree
- *
- * Note that this does not internally dereference the node pointer
- * (though the tree's lessthan callback might!), it just tests it for
- * equality with items in the tree. So it's feasible to use this to
- * implement a "set" construct by simply testing the pointer value
- * itself.
- */
- bool rb_contains(struct rbtree *tree, struct rbnode *node);
- #ifndef CONFIG_MISRA_SANE
- /**
- * @brief Walk/enumerate a rbtree
- *
- * Very simple recursive enumeration. Low code size, but requiring a
- * separate function can be clumsy for the user and there is no way to
- * break out of the loop early. See RB_FOR_EACH for an iterative
- * implementation.
- */
- static inline void rb_walk(struct rbtree *tree, rb_visit_t visit_fn,
- void *cookie)
- {
- z_rb_walk(tree->root, visit_fn, cookie);
- }
- #endif
- struct _rb_foreach {
- struct rbnode **stack;
- uint8_t *is_left;
- int32_t top;
- };
- #ifdef CONFIG_MISRA_SANE
- #define _RB_FOREACH_INIT(tree, node) { \
- .stack = &(tree)->iter_stack[0], \
- .is_left = &(tree)->iter_left[0], \
- .top = -1 \
- }
- #else
- #define _RB_FOREACH_INIT(tree, node) { \
- .stack = (struct rbnode **) \
- alloca((tree)->max_depth * sizeof(struct rbnode *)), \
- .is_left = (uint8_t *)alloca((tree)->max_depth * sizeof(uint8_t)),\
- .top = -1 \
- }
- #endif
- struct rbnode *z_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f);
- /**
- * @brief Walk a tree in-order without recursing
- *
- * While @ref rb_walk() is very simple, recursing on the C stack can
- * be clumsy for some purposes and on some architectures wastes
- * significant memory in stack frames. This macro implements a
- * non-recursive "foreach" loop that can iterate directly on the tree,
- * at a moderate cost in code size.
- *
- * Note that the resulting loop is not safe against modifications to
- * the tree. Changes to the tree structure during the loop will
- * produce incorrect results, as nodes may be skipped or duplicated.
- * Unlike linked lists, no _SAFE variant exists.
- *
- * Note also that the macro expands its arguments multiple times, so
- * they should not be expressions with side effects.
- *
- * @param tree A pointer to a struct rbtree to walk
- * @param node The symbol name of a local struct rbnode* variable to
- * use as the iterator
- */
- #define RB_FOR_EACH(tree, node) \
- for (struct _rb_foreach __f = _RB_FOREACH_INIT(tree, node); \
- (node = z_rb_foreach_next(tree, &__f)); \
- /**/)
- /**
- * @brief Loop over rbtree with implicit container field logic
- *
- * As for RB_FOR_EACH(), but "node" can have an arbitrary type
- * containing a struct rbnode.
- *
- * @param tree A pointer to a struct rbtree to walk
- * @param node The symbol name of a local iterator
- * @param field The field name of a struct rbnode inside node
- */
- #define RB_FOR_EACH_CONTAINER(tree, node, field) \
- for (struct _rb_foreach __f = _RB_FOREACH_INIT(tree, node); \
- ({struct rbnode *n = z_rb_foreach_next(tree, &__f); \
- node = n ? CONTAINER_OF(n, __typeof__(*(node)), \
- field) : NULL; }) != NULL; \
- /**/)
- /** @} */
- #endif /* ZEPHYR_INCLUDE_SYS_RB_H_ */
|