fdtable.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /*
  2. * Copyright (c) 2018 Linaro Limited
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /**
  7. * @file
  8. * @brief File descriptor table
  9. *
  10. * This file provides generic file descriptor table implementation, suitable
  11. * for any I/O object implementing POSIX I/O semantics (i.e. read/write +
  12. * aux operations).
  13. */
  14. #include <errno.h>
  15. #include <fcntl.h>
  16. #include <kernel.h>
  17. #include <sys/fdtable.h>
  18. #include <sys/speculation.h>
  19. #include <syscall_handler.h>
  20. #include <sys/atomic.h>
  21. struct fd_entry {
  22. void *obj;
  23. const struct fd_op_vtable *vtable;
  24. atomic_t refcount;
  25. struct k_mutex lock;
  26. };
  27. #ifdef CONFIG_POSIX_API
  28. static const struct fd_op_vtable stdinout_fd_op_vtable;
  29. #endif
  30. static struct fd_entry fdtable[CONFIG_POSIX_MAX_FDS] = {
  31. #ifdef CONFIG_POSIX_API
  32. /*
  33. * Predefine entries for stdin/stdout/stderr.
  34. */
  35. {
  36. /* STDIN */
  37. .vtable = &stdinout_fd_op_vtable,
  38. .refcount = ATOMIC_INIT(1)
  39. },
  40. {
  41. /* STDOUT */
  42. .vtable = &stdinout_fd_op_vtable,
  43. .refcount = ATOMIC_INIT(1)
  44. },
  45. {
  46. /* STDERR */
  47. .vtable = &stdinout_fd_op_vtable,
  48. .refcount = ATOMIC_INIT(1)
  49. },
  50. #endif
  51. };
  52. static K_MUTEX_DEFINE(fdtable_lock);
  53. static int z_fd_ref(int fd)
  54. {
  55. return atomic_inc(&fdtable[fd].refcount) + 1;
  56. }
  57. static int z_fd_unref(int fd)
  58. {
  59. atomic_val_t old_rc;
  60. /* Reference counter must be checked to avoid decrement refcount below
  61. * zero causing file descriptor leak. Loop statement below executes
  62. * atomic decrement if refcount value is grater than zero. Otherwise,
  63. * refcount is not going to be written.
  64. */
  65. do {
  66. old_rc = atomic_get(&fdtable[fd].refcount);
  67. if (!old_rc) {
  68. return 0;
  69. }
  70. } while (!atomic_cas(&fdtable[fd].refcount, old_rc, old_rc - 1));
  71. if (old_rc != 1) {
  72. return old_rc - 1;
  73. }
  74. fdtable[fd].obj = NULL;
  75. fdtable[fd].vtable = NULL;
  76. return 0;
  77. }
  78. static int _find_fd_entry(void)
  79. {
  80. int fd;
  81. for (fd = 0; fd < ARRAY_SIZE(fdtable); fd++) {
  82. if (!atomic_get(&fdtable[fd].refcount)) {
  83. return fd;
  84. }
  85. }
  86. errno = ENFILE;
  87. return -1;
  88. }
  89. static int _check_fd(int fd)
  90. {
  91. if (fd < 0 || fd >= ARRAY_SIZE(fdtable)) {
  92. errno = EBADF;
  93. return -1;
  94. }
  95. fd = k_array_index_sanitize(fd, ARRAY_SIZE(fdtable));
  96. if (!atomic_get(&fdtable[fd].refcount)) {
  97. errno = EBADF;
  98. return -1;
  99. }
  100. return 0;
  101. }
  102. void *z_get_fd_obj(int fd, const struct fd_op_vtable *vtable, int err)
  103. {
  104. struct fd_entry *entry;
  105. if (_check_fd(fd) < 0) {
  106. return NULL;
  107. }
  108. entry = &fdtable[fd];
  109. if (vtable != NULL && entry->vtable != vtable) {
  110. errno = err;
  111. return NULL;
  112. }
  113. return entry->obj;
  114. }
  115. void *z_get_fd_obj_and_vtable(int fd, const struct fd_op_vtable **vtable,
  116. struct k_mutex **lock)
  117. {
  118. struct fd_entry *entry;
  119. if (_check_fd(fd) < 0) {
  120. return NULL;
  121. }
  122. entry = &fdtable[fd];
  123. *vtable = entry->vtable;
  124. if (lock) {
  125. *lock = &entry->lock;
  126. }
  127. return entry->obj;
  128. }
  129. int z_reserve_fd(void)
  130. {
  131. int fd;
  132. (void)k_mutex_lock(&fdtable_lock, K_FOREVER);
  133. fd = _find_fd_entry();
  134. if (fd >= 0) {
  135. /* Mark entry as used, z_finalize_fd() will fill it in. */
  136. (void)z_fd_ref(fd);
  137. fdtable[fd].obj = NULL;
  138. fdtable[fd].vtable = NULL;
  139. k_mutex_init(&fdtable[fd].lock);
  140. }
  141. k_mutex_unlock(&fdtable_lock);
  142. return fd;
  143. }
  144. void z_finalize_fd(int fd, void *obj, const struct fd_op_vtable *vtable)
  145. {
  146. /* Assumes fd was already bounds-checked. */
  147. #ifdef CONFIG_USERSPACE
  148. /* descriptor context objects are inserted into the table when they
  149. * are ready for use. Mark the object as initialized and grant the
  150. * caller (and only the caller) access.
  151. *
  152. * This call is a no-op if obj is invalid or points to something
  153. * not a kernel object.
  154. */
  155. z_object_recycle(obj);
  156. #endif
  157. fdtable[fd].obj = obj;
  158. fdtable[fd].vtable = vtable;
  159. /* Let the object know about the lock just in case it needs it
  160. * for something. For BSD sockets, the lock is used with condition
  161. * variables to avoid keeping the lock for a long period of time.
  162. */
  163. if (vtable && vtable->ioctl) {
  164. (void)z_fdtable_call_ioctl(vtable, obj, ZFD_IOCTL_SET_LOCK,
  165. &fdtable[fd].lock);
  166. }
  167. }
  168. void z_free_fd(int fd)
  169. {
  170. /* Assumes fd was already bounds-checked. */
  171. (void)z_fd_unref(fd);
  172. }
  173. int z_alloc_fd(void *obj, const struct fd_op_vtable *vtable)
  174. {
  175. int fd;
  176. fd = z_reserve_fd();
  177. if (fd >= 0) {
  178. z_finalize_fd(fd, obj, vtable);
  179. }
  180. return fd;
  181. }
  182. #ifdef CONFIG_POSIX_API
  183. ssize_t read(int fd, void *buf, size_t sz)
  184. {
  185. if (_check_fd(fd) < 0) {
  186. return -1;
  187. }
  188. return fdtable[fd].vtable->read(fdtable[fd].obj, buf, sz);
  189. }
  190. FUNC_ALIAS(read, _read, ssize_t);
  191. ssize_t write(int fd, const void *buf, size_t sz)
  192. {
  193. if (_check_fd(fd) < 0) {
  194. return -1;
  195. }
  196. return fdtable[fd].vtable->write(fdtable[fd].obj, buf, sz);
  197. }
  198. FUNC_ALIAS(write, _write, ssize_t);
  199. int close(int fd)
  200. {
  201. int res;
  202. if (_check_fd(fd) < 0) {
  203. return -1;
  204. }
  205. res = fdtable[fd].vtable->close(fdtable[fd].obj);
  206. z_free_fd(fd);
  207. return res;
  208. }
  209. FUNC_ALIAS(close, _close, int);
  210. int fsync(int fd)
  211. {
  212. if (_check_fd(fd) < 0) {
  213. return -1;
  214. }
  215. return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_FSYNC);
  216. }
  217. FUNC_ALIAS(fsync, _fsync, ssize_t);
  218. off_t lseek(int fd, off_t offset, int whence)
  219. {
  220. if (_check_fd(fd) < 0) {
  221. return -1;
  222. }
  223. return z_fdtable_call_ioctl(fdtable[fd].vtable, fdtable[fd].obj, ZFD_IOCTL_LSEEK,
  224. offset, whence);
  225. }
  226. FUNC_ALIAS(lseek, _lseek, off_t);
  227. int ioctl(int fd, unsigned long request, ...)
  228. {
  229. va_list args;
  230. int res;
  231. if (_check_fd(fd) < 0) {
  232. return -1;
  233. }
  234. va_start(args, request);
  235. res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, request, args);
  236. va_end(args);
  237. return res;
  238. }
  239. int fcntl(int fd, int cmd, ...)
  240. {
  241. va_list args;
  242. int res;
  243. if (_check_fd(fd) < 0) {
  244. return -1;
  245. }
  246. /* Handle fdtable commands. */
  247. if (cmd == F_DUPFD) {
  248. /* Not implemented so far. */
  249. errno = EINVAL;
  250. return -1;
  251. }
  252. /* The rest of commands are per-fd, handled by ioctl vmethod. */
  253. va_start(args, cmd);
  254. res = fdtable[fd].vtable->ioctl(fdtable[fd].obj, cmd, args);
  255. va_end(args);
  256. return res;
  257. }
  258. /*
  259. * fd operations for stdio/stdout/stderr
  260. */
  261. int z_impl_zephyr_write_stdout(const char *buf, int nbytes);
  262. static ssize_t stdinout_read_vmeth(void *obj, void *buffer, size_t count)
  263. {
  264. return 0;
  265. }
  266. static ssize_t stdinout_write_vmeth(void *obj, const void *buffer, size_t count)
  267. {
  268. #if defined(CONFIG_BOARD_NATIVE_POSIX)
  269. return write(1, buffer, count);
  270. #elif defined(CONFIG_NEWLIB_LIBC) || defined(CONFIG_ARCMWDT_LIBC)
  271. return z_impl_zephyr_write_stdout(buffer, count);
  272. #else
  273. return 0;
  274. #endif
  275. }
  276. static int stdinout_ioctl_vmeth(void *obj, unsigned int request, va_list args)
  277. {
  278. errno = EINVAL;
  279. return -1;
  280. }
  281. static const struct fd_op_vtable stdinout_fd_op_vtable = {
  282. .read = stdinout_read_vmeth,
  283. .write = stdinout_write_vmeth,
  284. .ioctl = stdinout_ioctl_vmeth,
  285. };
  286. #endif /* CONFIG_POSIX_API */