heap.h 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. /*
  2. * Copyright (c) 2019 Intel Corporation
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #ifndef ZEPHYR_INCLUDE_LIB_OS_HEAP_H_
  7. #define ZEPHYR_INCLUDE_LIB_OS_HEAP_H_
  8. /*
  9. * Internal heap APIs
  10. */
  11. /* Theese validation checks are non-trivially expensive, so enable
  12. * only when debugging the heap code. They shouldn't be routine
  13. * assertions.
  14. */
  15. #ifdef CONFIG_SYS_HEAP_VALIDATE
  16. //#define CHECK(x) __ASSERT(x, "")
  17. #define CHECK(x) \
  18. do { \
  19. if (!(x)) { \
  20. printk("CHECK FAIL @ %s:%d\n", __FILE__, __LINE__); \
  21. k_panic(); \
  22. } \
  23. } while (false)
  24. #else
  25. #define CHECK(x) /**/
  26. #endif
  27. /* Chunks are identified by their offset in 8 byte units from the
  28. * first address in the buffer (a zero-valued chunkid_t is used as a
  29. * null; that chunk would always point into the metadata at the start
  30. * of the heap and cannot be allocated). They are prefixed by a
  31. * variable size header that depends on the size of the heap. Heaps
  32. * with fewer than 2^15 units (256kb) of storage use shorts to store
  33. * the fields, otherwise the units are 32 bit integers for a 16Gb heap
  34. * space (larger spaces really aren't in scope for this code, but
  35. * could be handled similarly I suppose). Because of that design
  36. * there's a certain amount of boilerplate API needed to expose the
  37. * field accessors since we can't use natural syntax.
  38. *
  39. * The fields are:
  40. * LEFT_SIZE: The size of the left (next lower chunk in memory)
  41. * neighbor chunk.
  42. * SIZE_AND_USED: the total size (including header) of the chunk in
  43. * 8-byte units. The bottom bit stores a "used" flag.
  44. * FREE_PREV: Chunk ID of the previous node in a free list.
  45. * FREE_NEXT: Chunk ID of the next node in a free list.
  46. *
  47. * The free lists are circular lists, one for each power-of-two size
  48. * category. The free list pointers exist only for free chunks,
  49. * obviously. This memory is part of the user's buffer when
  50. * allocated.
  51. *
  52. * The field order is so that allocated buffers are immediately bounded
  53. * by SIZE_AND_USED of the current chunk at the bottom, and LEFT_SIZE of
  54. * the following chunk at the top. This ordering allows for quick buffer
  55. * overflow detection by testing left_chunk(c + chunk_size(c)) == c.
  56. */
  57. enum chunk_fields { LEFT_SIZE, SIZE_AND_USED, FREE_PREV, FREE_NEXT };
  58. #define CHUNK_UNIT 8U
  59. typedef struct { char bytes[CHUNK_UNIT]; } chunk_unit_t;
  60. /* big_heap needs uint32_t, small_heap needs uint16_t */
  61. typedef uint32_t chunkid_t;
  62. typedef uint32_t chunksz_t;
  63. struct z_heap_bucket {
  64. chunkid_t next;
  65. };
  66. struct z_heap {
  67. chunkid_t chunk0_hdr[2];
  68. chunkid_t end_chunk;
  69. uint32_t avail_buckets;
  70. struct z_heap_bucket buckets[0];
  71. };
  72. static inline bool big_heap_chunks(chunksz_t chunks)
  73. {
  74. return sizeof(void *) > 4U || chunks > 0x7fffU;
  75. }
  76. static inline bool big_heap_bytes(size_t bytes)
  77. {
  78. return big_heap_chunks(bytes / CHUNK_UNIT);
  79. }
  80. static inline bool big_heap(struct z_heap *h)
  81. {
  82. return big_heap_chunks(h->end_chunk);
  83. }
  84. static inline chunk_unit_t *chunk_buf(struct z_heap *h)
  85. {
  86. /* the struct z_heap matches with the first chunk */
  87. return (chunk_unit_t *)h;
  88. }
  89. static inline chunkid_t chunk_field(struct z_heap *h, chunkid_t c,
  90. enum chunk_fields f)
  91. {
  92. chunk_unit_t *buf = chunk_buf(h);
  93. void *cmem = &buf[c];
  94. if (big_heap(h)) {
  95. return ((uint32_t *)cmem)[f];
  96. } else {
  97. return ((uint16_t *)cmem)[f];
  98. }
  99. }
  100. static inline void chunk_set(struct z_heap *h, chunkid_t c,
  101. enum chunk_fields f, chunkid_t val)
  102. {
  103. CHECK(c <= h->end_chunk);
  104. chunk_unit_t *buf = chunk_buf(h);
  105. void *cmem = &buf[c];
  106. if (big_heap(h)) {
  107. CHECK(val == (uint32_t)val);
  108. ((uint32_t *)cmem)[f] = val;
  109. } else {
  110. CHECK(val == (uint16_t)val);
  111. ((uint16_t *)cmem)[f] = val;
  112. }
  113. }
  114. static inline bool chunk_used(struct z_heap *h, chunkid_t c)
  115. {
  116. return chunk_field(h, c, SIZE_AND_USED) & 1U;
  117. }
  118. static inline chunksz_t chunk_size(struct z_heap *h, chunkid_t c)
  119. {
  120. return chunk_field(h, c, SIZE_AND_USED) >> 1;
  121. }
  122. static inline void set_chunk_used(struct z_heap *h, chunkid_t c, bool used)
  123. {
  124. chunk_unit_t *buf = chunk_buf(h);
  125. void *cmem = &buf[c];
  126. if (big_heap(h)) {
  127. if (used) {
  128. ((uint32_t *)cmem)[SIZE_AND_USED] |= 1U;
  129. } else {
  130. ((uint32_t *)cmem)[SIZE_AND_USED] &= ~1U;
  131. }
  132. } else {
  133. if (used) {
  134. ((uint16_t *)cmem)[SIZE_AND_USED] |= 1U;
  135. } else {
  136. ((uint16_t *)cmem)[SIZE_AND_USED] &= ~1U;
  137. }
  138. }
  139. }
  140. /*
  141. * Note: no need to preserve the used bit here as the chunk is never in use
  142. * when its size is modified, and potential set_chunk_used() is always
  143. * invoked after set_chunk_size().
  144. */
  145. static inline void set_chunk_size(struct z_heap *h, chunkid_t c, chunksz_t size)
  146. {
  147. chunk_set(h, c, SIZE_AND_USED, size << 1);
  148. }
  149. static inline chunkid_t prev_free_chunk(struct z_heap *h, chunkid_t c)
  150. {
  151. return chunk_field(h, c, FREE_PREV);
  152. }
  153. static inline chunkid_t next_free_chunk(struct z_heap *h, chunkid_t c)
  154. {
  155. return chunk_field(h, c, FREE_NEXT);
  156. }
  157. static inline void set_prev_free_chunk(struct z_heap *h, chunkid_t c,
  158. chunkid_t prev)
  159. {
  160. chunk_set(h, c, FREE_PREV, prev);
  161. }
  162. static inline void set_next_free_chunk(struct z_heap *h, chunkid_t c,
  163. chunkid_t next)
  164. {
  165. chunk_set(h, c, FREE_NEXT, next);
  166. }
  167. static inline chunkid_t left_chunk(struct z_heap *h, chunkid_t c)
  168. {
  169. return c - chunk_field(h, c, LEFT_SIZE);
  170. }
  171. static inline chunkid_t right_chunk(struct z_heap *h, chunkid_t c)
  172. {
  173. return c + chunk_size(h, c);
  174. }
  175. static inline void set_left_chunk_size(struct z_heap *h, chunkid_t c,
  176. chunksz_t size)
  177. {
  178. chunk_set(h, c, LEFT_SIZE, size);
  179. }
  180. static inline bool solo_free_header(struct z_heap *h, chunkid_t c)
  181. {
  182. return big_heap(h) && chunk_size(h, c) == 1U;
  183. }
  184. static inline size_t chunk_header_bytes(struct z_heap *h)
  185. {
  186. return big_heap(h) ? 8 : 4;
  187. }
  188. static inline size_t heap_footer_bytes(size_t size)
  189. {
  190. return big_heap_bytes(size) ? 8 : 4;
  191. }
  192. static inline chunksz_t chunksz(size_t bytes)
  193. {
  194. return (bytes + CHUNK_UNIT - 1U) / CHUNK_UNIT;
  195. }
  196. static inline chunksz_t bytes_to_chunksz(struct z_heap *h, size_t bytes)
  197. {
  198. return chunksz(chunk_header_bytes(h) + bytes);
  199. }
  200. static inline chunksz_t min_chunk_size(struct z_heap *h)
  201. {
  202. return bytes_to_chunksz(h, 1);
  203. }
  204. static inline size_t chunksz_to_bytes(struct z_heap *h, chunksz_t chunksz_in)
  205. {
  206. return chunksz_in * CHUNK_UNIT - chunk_header_bytes(h);
  207. }
  208. static inline int bucket_idx(struct z_heap *h, chunksz_t sz)
  209. {
  210. unsigned int usable_sz = sz - min_chunk_size(h) + 1;
  211. return 31 - __builtin_clz(usable_sz);
  212. }
  213. static inline bool size_too_big(struct z_heap *h, size_t bytes)
  214. {
  215. /*
  216. * Quick check to bail out early if size is too big.
  217. * Also guards against potential arithmetic overflows elsewhere.
  218. */
  219. return (bytes / CHUNK_UNIT) >= h->end_chunk;
  220. }
  221. /* For debugging */
  222. void heap_print_info(struct z_heap *h, bool dump_chunks);
  223. #endif /* ZEPHYR_INCLUDE_LIB_OS_HEAP_H_ */