p4wq.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. /*
  2. * Copyright (c) 2020 Intel Corporation
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <logging/log.h>
  7. #include <sys/p4wq.h>
  8. #include <wait_q.h>
  9. #include <kernel.h>
  10. #include <ksched.h>
  11. #include <init.h>
  12. LOG_MODULE_REGISTER(p4wq);
  13. struct device;
  14. static void set_prio(struct k_thread *th, struct k_p4wq_work *item)
  15. {
  16. __ASSERT_NO_MSG(!IS_ENABLED(CONFIG_SMP) || !z_is_thread_queued(th));
  17. th->base.prio = item->priority;
  18. th->base.prio_deadline = item->deadline;
  19. }
  20. static bool rb_lessthan(struct rbnode *a, struct rbnode *b)
  21. {
  22. struct k_p4wq_work *aw = CONTAINER_OF(a, struct k_p4wq_work, rbnode);
  23. struct k_p4wq_work *bw = CONTAINER_OF(b, struct k_p4wq_work, rbnode);
  24. if (aw->priority != bw->priority) {
  25. return aw->priority > bw->priority;
  26. }
  27. if (aw->deadline != bw->deadline) {
  28. return aw->deadline - bw->deadline > 0;
  29. }
  30. return (uintptr_t)a < (uintptr_t)b;
  31. }
  32. static void thread_set_requeued(struct k_thread *th)
  33. {
  34. th->base.user_options |= K_CALLBACK_STATE;
  35. }
  36. static void thread_clear_requeued(struct k_thread *th)
  37. {
  38. th->base.user_options &= ~K_CALLBACK_STATE;
  39. }
  40. static bool thread_was_requeued(struct k_thread *th)
  41. {
  42. return !!(th->base.user_options & K_CALLBACK_STATE);
  43. }
  44. /* Slightly different semantics: rb_lessthan must be perfectly
  45. * symmetric (to produce a single tree structure) and will use the
  46. * pointer value to break ties where priorities are equal, here we
  47. * tolerate equality as meaning "not lessthan"
  48. */
  49. static inline bool item_lessthan(struct k_p4wq_work *a, struct k_p4wq_work *b)
  50. {
  51. if (a->priority > b->priority) {
  52. return true;
  53. } else if ((a->priority == b->priority) &&
  54. (a->deadline != b->deadline)) {
  55. return a->deadline - b->deadline > 0;
  56. } else {
  57. ;
  58. }
  59. return false;
  60. }
  61. static FUNC_NORETURN void p4wq_loop(void *p0, void *p1, void *p2)
  62. {
  63. ARG_UNUSED(p1);
  64. ARG_UNUSED(p2);
  65. struct k_p4wq *queue = p0;
  66. k_spinlock_key_t k = k_spin_lock(&queue->lock);
  67. while (true) {
  68. struct rbnode *r = rb_get_max(&queue->queue);
  69. if (r) {
  70. struct k_p4wq_work *w
  71. = CONTAINER_OF(r, struct k_p4wq_work, rbnode);
  72. rb_remove(&queue->queue, r);
  73. w->thread = _current;
  74. sys_dlist_append(&queue->active, &w->dlnode);
  75. set_prio(_current, w);
  76. thread_clear_requeued(_current);
  77. k_spin_unlock(&queue->lock, k);
  78. w->handler(w);
  79. k = k_spin_lock(&queue->lock);
  80. /* Remove from the active list only if it
  81. * wasn't resubmitted already
  82. */
  83. if (!thread_was_requeued(_current)) {
  84. sys_dlist_remove(&w->dlnode);
  85. w->thread = NULL;
  86. k_sem_give(&w->done_sem);
  87. }
  88. } else {
  89. z_pend_curr(&queue->lock, k, &queue->waitq, K_FOREVER);
  90. k = k_spin_lock(&queue->lock);
  91. }
  92. }
  93. }
  94. /* Must be called to regain ownership of the work item */
  95. int k_p4wq_wait(struct k_p4wq_work *work, k_timeout_t timeout)
  96. {
  97. if (work->sync) {
  98. return k_sem_take(&work->done_sem, timeout);
  99. }
  100. return k_sem_count_get(&work->done_sem) ? 0 : -EBUSY;
  101. }
  102. void k_p4wq_init(struct k_p4wq *queue)
  103. {
  104. memset(queue, 0, sizeof(*queue));
  105. z_waitq_init(&queue->waitq);
  106. queue->queue.lessthan_fn = rb_lessthan;
  107. sys_dlist_init(&queue->active);
  108. }
  109. void k_p4wq_add_thread(struct k_p4wq *queue, struct k_thread *thread,
  110. k_thread_stack_t *stack,
  111. size_t stack_size)
  112. {
  113. k_thread_create(thread, stack, stack_size,
  114. p4wq_loop, queue, NULL, NULL,
  115. K_HIGHEST_THREAD_PRIO, 0,
  116. queue->flags & K_P4WQ_DELAYED_START ? K_FOREVER : K_NO_WAIT);
  117. }
  118. static int static_init(const struct device *dev)
  119. {
  120. ARG_UNUSED(dev);
  121. STRUCT_SECTION_FOREACH(k_p4wq_initparam, pp) {
  122. for (int i = 0; i < pp->num; i++) {
  123. uintptr_t ssz = K_THREAD_STACK_LEN(pp->stack_size);
  124. struct k_p4wq *q = pp->flags & K_P4WQ_QUEUE_PER_THREAD ?
  125. pp->queue + i : pp->queue;
  126. if (!i || (pp->flags & K_P4WQ_QUEUE_PER_THREAD)) {
  127. k_p4wq_init(q);
  128. }
  129. q->flags = pp->flags;
  130. /*
  131. * If the user wants to specify CPU affinity, we have to
  132. * delay starting threads until that has been done
  133. */
  134. if (q->flags & K_P4WQ_USER_CPU_MASK) {
  135. q->flags |= K_P4WQ_DELAYED_START;
  136. }
  137. k_p4wq_add_thread(q, &pp->threads[i],
  138. &pp->stacks[ssz * i],
  139. pp->stack_size);
  140. if (pp->flags & K_P4WQ_DELAYED_START) {
  141. z_mark_thread_as_suspended(&pp->threads[i]);
  142. }
  143. #ifdef CONFIG_SCHED_CPU_MASK
  144. if (pp->flags & K_P4WQ_USER_CPU_MASK) {
  145. int ret = k_thread_cpu_mask_clear(&pp->threads[i]);
  146. if (ret < 0)
  147. LOG_ERR("Couldn't clear CPU mask: %d", ret);
  148. }
  149. #endif
  150. }
  151. }
  152. return 0;
  153. }
  154. void k_p4wq_enable_static_thread(struct k_p4wq *queue, struct k_thread *thread,
  155. uint32_t cpu_mask)
  156. {
  157. #ifdef CONFIG_SCHED_CPU_MASK
  158. if (queue->flags & K_P4WQ_USER_CPU_MASK) {
  159. unsigned int i;
  160. while ((i = find_lsb_set(cpu_mask))) {
  161. int ret = k_thread_cpu_mask_enable(thread, i - 1);
  162. if (ret < 0)
  163. LOG_ERR("Couldn't set CPU mask for %u: %d", i, ret);
  164. cpu_mask &= ~BIT(i - 1);
  165. }
  166. }
  167. #endif
  168. if (queue->flags & K_P4WQ_DELAYED_START) {
  169. z_mark_thread_as_not_suspended(thread);
  170. k_thread_start(thread);
  171. }
  172. }
  173. /* We spawn a bunch of high priority threads, use the "SMP" initlevel
  174. * so they can initialize in parallel instead of serially on the main
  175. * CPU.
  176. */
  177. SYS_INIT(static_init, APPLICATION, 99);
  178. void k_p4wq_submit(struct k_p4wq *queue, struct k_p4wq_work *item)
  179. {
  180. k_spinlock_key_t k = k_spin_lock(&queue->lock);
  181. /* Input is a delta time from now (to match
  182. * k_thread_deadline_set()), but we store and use the absolute
  183. * cycle count.
  184. */
  185. item->deadline += k_cycle_get_32();
  186. /* Resubmission from within handler? Remove from active list */
  187. if (item->thread == _current) {
  188. sys_dlist_remove(&item->dlnode);
  189. thread_set_requeued(_current);
  190. item->thread = NULL;
  191. } else {
  192. k_sem_init(&item->done_sem, 0, 1);
  193. }
  194. __ASSERT_NO_MSG(item->thread == NULL);
  195. rb_insert(&queue->queue, &item->rbnode);
  196. item->queue = queue;
  197. /* If there were other items already ahead of it in the queue,
  198. * then we don't need to revisit active thread state and can
  199. * return.
  200. */
  201. if (rb_get_max(&queue->queue) != &item->rbnode) {
  202. goto out;
  203. }
  204. /* Check the list of active (running or preempted) items, if
  205. * there are at least an "active target" of those that are
  206. * higher priority than the new item, then no one needs to be
  207. * preempted and we can return.
  208. */
  209. struct k_p4wq_work *wi;
  210. uint32_t n_beaten_by = 0, active_target = CONFIG_MP_NUM_CPUS;
  211. SYS_DLIST_FOR_EACH_CONTAINER(&queue->active, wi, dlnode) {
  212. /*
  213. * item_lessthan(a, b) == true means a has lower priority than b
  214. * !item_lessthan(a, b) counts all work items with higher or
  215. * equal priority
  216. */
  217. if (!item_lessthan(wi, item)) {
  218. n_beaten_by++;
  219. }
  220. }
  221. if (n_beaten_by >= active_target) {
  222. /* Too many already have higher priority, not preempting */
  223. goto out;
  224. }
  225. /* Grab a thread, set its priority and queue it. If there are
  226. * no threads available to unpend, this is a soft runtime
  227. * error: we are breaking our promise about run order.
  228. * Complain.
  229. */
  230. struct k_thread *th = z_unpend_first_thread(&queue->waitq);
  231. if (th == NULL) {
  232. LOG_WRN("Out of worker threads, priority guarantee violated");
  233. goto out;
  234. }
  235. set_prio(th, item);
  236. z_ready_thread(th);
  237. z_reschedule(&queue->lock, k);
  238. return;
  239. out:
  240. k_spin_unlock(&queue->lock, k);
  241. }
  242. bool k_p4wq_cancel(struct k_p4wq *queue, struct k_p4wq_work *item)
  243. {
  244. k_spinlock_key_t k = k_spin_lock(&queue->lock);
  245. bool ret = rb_contains(&queue->queue, &item->rbnode);
  246. if (ret) {
  247. rb_remove(&queue->queue, &item->rbnode);
  248. k_sem_give(&item->done_sem);
  249. }
  250. k_spin_unlock(&queue->lock, k);
  251. return ret;
  252. }