rb.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. /*
  2. * Copyright (c) 2018 Intel Corporation
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /* These assertions are very useful when debugging the tree code
  7. * itself, but produce significant performance degradation as they are
  8. * checked many times per operation. Leave them off unless you're
  9. * working on the rbtree code itself
  10. */
  11. #define CHECK(n) /**/
  12. /* #define CHECK(n) __ASSERT_NO_MSG(n) */
  13. #include <kernel.h>
  14. #include <sys/rb.h>
  15. #include <stdbool.h>
  16. enum rb_color { RED = 0U, BLACK = 1U };
  17. static struct rbnode *get_child(struct rbnode *n, uint8_t side)
  18. {
  19. CHECK(n);
  20. if (side != 0U) {
  21. return n->children[1];
  22. }
  23. uintptr_t l = (uintptr_t) n->children[0];
  24. l &= ~1UL;
  25. return (struct rbnode *) l;
  26. }
  27. static void set_child(struct rbnode *n, uint8_t side, void *val)
  28. {
  29. CHECK(n);
  30. if (side != 0U) {
  31. n->children[1] = val;
  32. } else {
  33. uintptr_t old = (uintptr_t) n->children[0];
  34. uintptr_t new = (uintptr_t) val;
  35. n->children[0] = (void *) (new | (old & 1UL));
  36. }
  37. }
  38. static enum rb_color get_color(struct rbnode *n)
  39. {
  40. CHECK(n);
  41. return ((uintptr_t)n->children[0]) & 1UL;
  42. }
  43. static bool is_black(struct rbnode *n)
  44. {
  45. return get_color(n) == BLACK;
  46. }
  47. static bool is_red(struct rbnode *n)
  48. {
  49. return get_color(n) == RED;
  50. }
  51. static void set_color(struct rbnode *n, enum rb_color color)
  52. {
  53. CHECK(n);
  54. uintptr_t *p = (void *) &n->children[0];
  55. *p = (*p & ~1UL) | (uint8_t)color;
  56. }
  57. /* Searches the tree down to a node that is either identical with the
  58. * "node" argument or has an empty/leaf child pointer where "node"
  59. * should be, leaving all nodes found in the resulting stack. Note
  60. * that tree must not be empty and that stack should be allocated to
  61. * contain at least tree->max_depth entries! Returns the number of
  62. * entries pushed onto the stack.
  63. */
  64. static int find_and_stack(struct rbtree *tree, struct rbnode *node,
  65. struct rbnode **stack)
  66. {
  67. int sz = 0;
  68. stack[sz++] = tree->root;
  69. while (stack[sz - 1] != node) {
  70. uint8_t side = tree->lessthan_fn(node, stack[sz - 1]) ? 0U : 1U;
  71. struct rbnode *ch = get_child(stack[sz - 1], side);
  72. if (ch != NULL) {
  73. stack[sz++] = ch;
  74. } else {
  75. break;
  76. }
  77. }
  78. return sz;
  79. }
  80. struct rbnode *z_rb_get_minmax(struct rbtree *tree, uint8_t side)
  81. {
  82. struct rbnode *n;
  83. for (n = tree->root; (n != NULL) && (get_child(n, side) != NULL);
  84. n = get_child(n, side)) {
  85. ;
  86. }
  87. return n;
  88. }
  89. static uint8_t get_side(struct rbnode *parent, struct rbnode *child)
  90. {
  91. CHECK(get_child(parent, 0U) == child || get_child(parent, 1U) == child);
  92. return (get_child(parent, 1U) == child) ? 1U : 0U;
  93. }
  94. /* Swaps the position of the two nodes at the top of the provided
  95. * stack, modifying the stack accordingly. Does not change the color
  96. * of either node. That is, it effects the following transition (or
  97. * its mirror if N is on the other side of P, of course):
  98. *
  99. * P N
  100. * N c --> a P
  101. * a b b c
  102. *
  103. */
  104. static void rotate(struct rbnode **stack, int stacksz)
  105. {
  106. CHECK(stacksz >= 2);
  107. struct rbnode *parent = stack[stacksz - 2];
  108. struct rbnode *child = stack[stacksz - 1];
  109. uint8_t side = get_side(parent, child);
  110. struct rbnode *a = get_child(child, side);
  111. struct rbnode *b = get_child(child, (side == 0U) ? 1U : 0U);
  112. if (stacksz >= 3) {
  113. struct rbnode *grandparent = stack[stacksz - 3];
  114. set_child(grandparent, get_side(grandparent, parent), child);
  115. }
  116. set_child(child, side, a);
  117. set_child(child, (side == 0U) ? 1U : 0U, parent);
  118. set_child(parent, side, b);
  119. stack[stacksz - 2] = child;
  120. stack[stacksz - 1] = parent;
  121. }
  122. /* The node at the top of the provided stack is red, and its parent is
  123. * too. Iteratively fix the tree so it becomes a valid red black tree
  124. * again
  125. */
  126. static void fix_extra_red(struct rbnode **stack, int stacksz)
  127. {
  128. while (stacksz > 1) {
  129. struct rbnode *node = stack[stacksz - 1];
  130. struct rbnode *parent = stack[stacksz - 2];
  131. /* Correct child colors are a precondition of the loop */
  132. CHECK((get_child(node, 0U) == NULL) ||
  133. is_black(get_child(node, 0U)));
  134. CHECK((get_child(node, 1U) == NULL) ||
  135. is_black(get_child(node, 1U)));
  136. if (is_black(parent)) {
  137. return;
  138. }
  139. /* We are guaranteed to have a grandparent if our
  140. * parent is red, as red nodes cannot be the root
  141. */
  142. CHECK(stacksz >= 2);
  143. struct rbnode *grandparent = stack[stacksz - 3];
  144. uint8_t side = get_side(grandparent, parent);
  145. struct rbnode *aunt = get_child(grandparent,
  146. (side == 0U) ? 1U : 0U);
  147. if ((aunt != NULL) && is_red(aunt)) {
  148. set_color(grandparent, RED);
  149. set_color(parent, BLACK);
  150. set_color(aunt, BLACK);
  151. /* We colored the grandparent red, which might
  152. * have a red parent, so continue iterating
  153. * from there.
  154. */
  155. stacksz -= 2;
  156. continue;
  157. }
  158. /* We can rotate locally to fix the whole tree. First
  159. * make sure that node is on the same side of parent
  160. * as parent is of grandparent.
  161. */
  162. uint8_t parent_side = get_side(parent, node);
  163. if (parent_side != side) {
  164. rotate(stack, stacksz);
  165. node = stack[stacksz - 1];
  166. }
  167. /* Rotate the grandparent with parent, swapping colors */
  168. rotate(stack, stacksz - 1);
  169. set_color(stack[stacksz - 3], BLACK);
  170. set_color(stack[stacksz - 2], RED);
  171. return;
  172. }
  173. /* If we exit the loop, it's because our node is now the root,
  174. * which must be black.
  175. */
  176. set_color(stack[0], BLACK);
  177. }
  178. void rb_insert(struct rbtree *tree, struct rbnode *node)
  179. {
  180. set_child(node, 0U, NULL);
  181. set_child(node, 1U, NULL);
  182. if (tree->root == NULL) {
  183. tree->root = node;
  184. tree->max_depth = 1;
  185. set_color(node, BLACK);
  186. return;
  187. }
  188. #ifdef CONFIG_MISRA_SANE
  189. struct rbnode **stack = &tree->iter_stack[0];
  190. #else
  191. struct rbnode *stack[tree->max_depth + 1];
  192. #endif
  193. int stacksz = find_and_stack(tree, node, stack);
  194. struct rbnode *parent = stack[stacksz - 1];
  195. uint8_t side = tree->lessthan_fn(node, parent) ? 0U : 1U;
  196. set_child(parent, side, node);
  197. set_color(node, RED);
  198. stack[stacksz++] = node;
  199. fix_extra_red(stack, stacksz);
  200. if (stacksz > tree->max_depth) {
  201. tree->max_depth = stacksz;
  202. }
  203. /* We may have rotated up into the root! */
  204. tree->root = stack[0];
  205. CHECK(is_black(tree->root));
  206. }
  207. /* Called for a node N (at the top of the stack) which after a
  208. * deletion operation is "missing a black" in its subtree. By
  209. * construction N must be black (because if it was red it would be
  210. * trivially fixed by recoloring and we wouldn't be here). Fixes up
  211. * the tree to preserve red/black rules. The "null_node" pointer is
  212. * for situations where we are removing a childless black node. The
  213. * tree munging needs a real node for simplicity, so we use it and
  214. * then clean it up (replace it with a simple NULL child in the
  215. * parent) when finished.
  216. */
  217. static void fix_missing_black(struct rbnode **stack, int stacksz,
  218. struct rbnode *null_node)
  219. {
  220. /* Loop upward until we reach the root */
  221. while (stacksz > 1) {
  222. struct rbnode *c0, *c1, *inner, *outer;
  223. struct rbnode *n = stack[stacksz - 1];
  224. struct rbnode *parent = stack[stacksz - 2];
  225. uint8_t n_side = get_side(parent, n);
  226. struct rbnode *sib = get_child(parent,
  227. (n_side == 0U) ? 1U : 0U);
  228. CHECK(is_black(n));
  229. /* Guarantee the sibling is black, rotating N down a
  230. * level if needed (after rotate() our parent is the
  231. * child of our previous-sibling, so N is lower in the
  232. * tree)
  233. */
  234. if (!is_black(sib)) {
  235. stack[stacksz - 1] = sib;
  236. rotate(stack, stacksz);
  237. set_color(parent, RED);
  238. set_color(sib, BLACK);
  239. stack[stacksz++] = n;
  240. parent = stack[stacksz - 2];
  241. sib = get_child(parent, (n_side == 0U) ? 1U : 0U);
  242. }
  243. CHECK(sib);
  244. /* Cases where the sibling has only black children
  245. * have simple resolutions
  246. */
  247. c0 = get_child(sib, 0U);
  248. c1 = get_child(sib, 1U);
  249. if (((c0 == NULL) || is_black(c0)) && ((c1 == NULL) ||
  250. is_black(c1))) {
  251. if (n == null_node) {
  252. set_child(parent, n_side, NULL);
  253. }
  254. set_color(sib, RED);
  255. if (is_black(parent)) {
  256. /* Balance the sibling's subtree by
  257. * coloring it red, then our parent
  258. * has a missing black so iterate
  259. * upward
  260. */
  261. stacksz--;
  262. continue;
  263. } else {
  264. /* Recoloring makes the whole tree OK */
  265. set_color(parent, BLACK);
  266. return;
  267. }
  268. }
  269. CHECK((c0 && is_red(c0)) || (c1 && is_red(c1)));
  270. /* We know sibling has at least one red child. Fix it
  271. * so that the far/outer position (i.e. on the
  272. * opposite side from N) is definitely red.
  273. */
  274. outer = get_child(sib, (n_side == 0U) ? 1U : 0U);
  275. if (!((outer != NULL) && is_red(outer))) {
  276. inner = get_child(sib, n_side);
  277. stack[stacksz - 1] = sib;
  278. stack[stacksz++] = inner;
  279. rotate(stack, stacksz);
  280. set_color(sib, RED);
  281. set_color(inner, BLACK);
  282. /* Restore stack state to have N on the top
  283. * and make sib reflect the new sibling
  284. */
  285. sib = stack[stacksz - 2];
  286. outer = get_child(sib, (n_side == 0U) ? 1U : 0U);
  287. stack[stacksz - 2] = n;
  288. stacksz--;
  289. }
  290. /* Finally, the sibling must have a red child in the
  291. * far/outer slot. We can rotate sib with our parent
  292. * and recolor to produce a valid tree.
  293. */
  294. CHECK(is_red(outer));
  295. set_color(sib, get_color(parent));
  296. set_color(parent, BLACK);
  297. set_color(outer, BLACK);
  298. stack[stacksz - 1] = sib;
  299. rotate(stack, stacksz);
  300. if (n == null_node) {
  301. set_child(parent, n_side, NULL);
  302. }
  303. return;
  304. }
  305. }
  306. void rb_remove(struct rbtree *tree, struct rbnode *node)
  307. {
  308. struct rbnode *tmp;
  309. #ifdef CONFIG_MISRA_SANE
  310. struct rbnode **stack = &tree->iter_stack[0];
  311. #else
  312. struct rbnode *stack[tree->max_depth + 1];
  313. #endif
  314. int stacksz = find_and_stack(tree, node, stack);
  315. if (node != stack[stacksz - 1]) {
  316. return;
  317. }
  318. /* We can only remove a node with zero or one child, if we
  319. * have two then pick the "biggest" child of side 0 (smallest
  320. * of 1 would work too) and swap our spot in the tree with
  321. * that one
  322. */
  323. if ((get_child(node, 0U) != NULL) && (get_child(node, 1U) != NULL)) {
  324. int stacksz0 = stacksz;
  325. struct rbnode *hiparent, *loparent;
  326. struct rbnode *node2 = get_child(node, 0U);
  327. hiparent = (stacksz > 1) ? stack[stacksz - 2] : NULL;
  328. stack[stacksz++] = node2;
  329. while (get_child(node2, 1U) != NULL) {
  330. node2 = get_child(node2, 1U);
  331. stack[stacksz++] = node2;
  332. }
  333. loparent = stack[stacksz - 2];
  334. /* Now swap the position of node/node2 in the tree.
  335. * Design note: this is a spot where being an
  336. * intrusive data structure hurts us fairly badly.
  337. * The trees you see in textbooks do this by swapping
  338. * the "data" pointers between the two nodes, but we
  339. * have a few special cases to check. In principle
  340. * this works by swapping the child pointers between
  341. * the nodes and retargetting the nodes pointing to
  342. * them from their parents, but: (1) the upper node
  343. * may be the root of the tree and not have a parent,
  344. * and (2) the lower node may be a direct child of the
  345. * upper node. Remember to swap the color bits of the
  346. * two nodes also. And of course we don't have parent
  347. * pointers, so the stack tracking this structure
  348. * needs to be swapped too!
  349. */
  350. if (hiparent != NULL) {
  351. set_child(hiparent, get_side(hiparent, node), node2);
  352. } else {
  353. tree->root = node2;
  354. }
  355. if (loparent == node) {
  356. set_child(node, 0U, get_child(node2, 0U));
  357. set_child(node2, 0U, node);
  358. } else {
  359. set_child(loparent, get_side(loparent, node2), node);
  360. tmp = get_child(node, 0U);
  361. set_child(node, 0U, get_child(node2, 0U));
  362. set_child(node2, 0U, tmp);
  363. }
  364. set_child(node2, 1U, get_child(node, 1U));
  365. set_child(node, 1U, NULL);
  366. tmp = stack[stacksz0 - 1];
  367. stack[stacksz0 - 1] = stack[stacksz - 1];
  368. stack[stacksz - 1] = tmp;
  369. enum rb_color ctmp = get_color(node);
  370. set_color(node, get_color(node2));
  371. set_color(node2, ctmp);
  372. }
  373. CHECK((get_child(node, 0U) == NULL) ||
  374. (get_child(node, 1U) == NULL));
  375. struct rbnode *child = get_child(node, 0U);
  376. if (child == NULL) {
  377. child = get_child(node, 1U);
  378. }
  379. /* Removing the root */
  380. if (stacksz < 2) {
  381. tree->root = child;
  382. if (child != NULL) {
  383. set_color(child, BLACK);
  384. } else {
  385. tree->max_depth = 0;
  386. }
  387. return;
  388. }
  389. struct rbnode *parent = stack[stacksz - 2];
  390. /* Special case: if the node to be removed is childless, then
  391. * we leave it in place while we do the missing black
  392. * rotations, which will replace it with a proper NULL when
  393. * they isolate it.
  394. */
  395. if (child == NULL) {
  396. if (is_black(node)) {
  397. fix_missing_black(stack, stacksz, node);
  398. } else {
  399. /* Red childless nodes can just be dropped */
  400. set_child(parent, get_side(parent, node), NULL);
  401. }
  402. } else {
  403. set_child(parent, get_side(parent, node), child);
  404. /* Check colors, if one was red (at least one must have been
  405. * black in a valid tree), then we're done.
  406. */
  407. __ASSERT(is_black(node) || is_black(child), "both nodes red?!");
  408. if (is_red(node) || is_red(child)) {
  409. set_color(child, BLACK);
  410. }
  411. }
  412. /* We may have rotated up into the root! */
  413. tree->root = stack[0];
  414. }
  415. #ifndef CONFIG_MISRA_SANE
  416. void z_rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie)
  417. {
  418. if (node != NULL) {
  419. z_rb_walk(get_child(node, 0U), visit_fn, cookie);
  420. visit_fn(node, cookie);
  421. z_rb_walk(get_child(node, 1U), visit_fn, cookie);
  422. }
  423. }
  424. #endif
  425. struct rbnode *z_rb_child(struct rbnode *node, uint8_t side)
  426. {
  427. return get_child(node, side);
  428. }
  429. int z_rb_is_black(struct rbnode *node)
  430. {
  431. return is_black(node);
  432. }
  433. bool rb_contains(struct rbtree *tree, struct rbnode *node)
  434. {
  435. struct rbnode *n = tree->root;
  436. while ((n != NULL) && (n != node)) {
  437. n = get_child(n, tree->lessthan_fn(n, node));
  438. }
  439. return n == node;
  440. }
  441. /* Pushes the node and its chain of left-side children onto the stack
  442. * in the foreach struct, returning the last node, which is the next
  443. * node to iterate. By construction node will always be a right child
  444. * or the root, so is_left must be false.
  445. */
  446. static inline struct rbnode *stack_left_limb(struct rbnode *n,
  447. struct _rb_foreach *f)
  448. {
  449. f->top++;
  450. f->stack[f->top] = n;
  451. f->is_left[f->top] = 0U;
  452. while ((n = get_child(n, 0U)) != NULL) {
  453. f->top++;
  454. f->stack[f->top] = n;
  455. f->is_left[f->top] = 1;
  456. }
  457. return f->stack[f->top];
  458. }
  459. /* The foreach tracking works via a dynamic stack allocated via
  460. * alloca(). The current node is found in stack[top] (and its parent
  461. * is thus stack[top-1]). The side of each stacked node from its
  462. * parent is stored in is_left[] (i.e. if is_left[top] is true, then
  463. * node/stack[top] is the left child of stack[top-1]). The special
  464. * case of top == -1 indicates that the stack is uninitialized and we
  465. * need to push an initial stack starting at the root.
  466. */
  467. struct rbnode *z_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f)
  468. {
  469. struct rbnode *n;
  470. if (tree->root == NULL) {
  471. return NULL;
  472. }
  473. /* Initialization condition, pick the leftmost child of the
  474. * root as our first node, initializing the stack on the way.
  475. */
  476. if (f->top == -1) {
  477. return stack_left_limb(tree->root, f);
  478. }
  479. /* The next child from a given node is the leftmost child of
  480. * it's right subtree if it has a right child
  481. */
  482. n = get_child(f->stack[f->top], 1U);
  483. if (n != NULL) {
  484. return stack_left_limb(n, f);
  485. }
  486. /* Otherwise if the node is a left child of its parent, the
  487. * next node is the parent (note that the root is stacked
  488. * above with is_left set to 0, so this condition still works
  489. * even if node has no parent).
  490. */
  491. if (f->is_left[f->top] != 0U) {
  492. return f->stack[--f->top];
  493. }
  494. /* If we had no left tree and are a right child then our
  495. * parent was already walked, so walk up the stack looking for
  496. * a left child (whose parent is unwalked, and thus next).
  497. */
  498. while ((f->top > 0) && (f->is_left[f->top] == 0U)) {
  499. f->top--;
  500. }
  501. f->top--;
  502. return (f->top >= 0) ? f->stack[f->top] : NULL;
  503. }