123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600 |
- /*
- * Copyright (c) 2018 Intel Corporation
- *
- * SPDX-License-Identifier: Apache-2.0
- */
- /* These assertions are very useful when debugging the tree code
- * itself, but produce significant performance degradation as they are
- * checked many times per operation. Leave them off unless you're
- * working on the rbtree code itself
- */
- #define CHECK(n) /**/
- /* #define CHECK(n) __ASSERT_NO_MSG(n) */
- #include <kernel.h>
- #include <sys/rb.h>
- #include <stdbool.h>
- enum rb_color { RED = 0U, BLACK = 1U };
- static struct rbnode *get_child(struct rbnode *n, uint8_t side)
- {
- CHECK(n);
- if (side != 0U) {
- return n->children[1];
- }
- uintptr_t l = (uintptr_t) n->children[0];
- l &= ~1UL;
- return (struct rbnode *) l;
- }
- static void set_child(struct rbnode *n, uint8_t side, void *val)
- {
- CHECK(n);
- if (side != 0U) {
- n->children[1] = val;
- } else {
- uintptr_t old = (uintptr_t) n->children[0];
- uintptr_t new = (uintptr_t) val;
- n->children[0] = (void *) (new | (old & 1UL));
- }
- }
- static enum rb_color get_color(struct rbnode *n)
- {
- CHECK(n);
- return ((uintptr_t)n->children[0]) & 1UL;
- }
- static bool is_black(struct rbnode *n)
- {
- return get_color(n) == BLACK;
- }
- static bool is_red(struct rbnode *n)
- {
- return get_color(n) == RED;
- }
- static void set_color(struct rbnode *n, enum rb_color color)
- {
- CHECK(n);
- uintptr_t *p = (void *) &n->children[0];
- *p = (*p & ~1UL) | (uint8_t)color;
- }
- /* Searches the tree down to a node that is either identical with the
- * "node" argument or has an empty/leaf child pointer where "node"
- * should be, leaving all nodes found in the resulting stack. Note
- * that tree must not be empty and that stack should be allocated to
- * contain at least tree->max_depth entries! Returns the number of
- * entries pushed onto the stack.
- */
- static int find_and_stack(struct rbtree *tree, struct rbnode *node,
- struct rbnode **stack)
- {
- int sz = 0;
- stack[sz++] = tree->root;
- while (stack[sz - 1] != node) {
- uint8_t side = tree->lessthan_fn(node, stack[sz - 1]) ? 0U : 1U;
- struct rbnode *ch = get_child(stack[sz - 1], side);
- if (ch != NULL) {
- stack[sz++] = ch;
- } else {
- break;
- }
- }
- return sz;
- }
- struct rbnode *z_rb_get_minmax(struct rbtree *tree, uint8_t side)
- {
- struct rbnode *n;
- for (n = tree->root; (n != NULL) && (get_child(n, side) != NULL);
- n = get_child(n, side)) {
- ;
- }
- return n;
- }
- static uint8_t get_side(struct rbnode *parent, struct rbnode *child)
- {
- CHECK(get_child(parent, 0U) == child || get_child(parent, 1U) == child);
- return (get_child(parent, 1U) == child) ? 1U : 0U;
- }
- /* Swaps the position of the two nodes at the top of the provided
- * stack, modifying the stack accordingly. Does not change the color
- * of either node. That is, it effects the following transition (or
- * its mirror if N is on the other side of P, of course):
- *
- * P N
- * N c --> a P
- * a b b c
- *
- */
- static void rotate(struct rbnode **stack, int stacksz)
- {
- CHECK(stacksz >= 2);
- struct rbnode *parent = stack[stacksz - 2];
- struct rbnode *child = stack[stacksz - 1];
- uint8_t side = get_side(parent, child);
- struct rbnode *a = get_child(child, side);
- struct rbnode *b = get_child(child, (side == 0U) ? 1U : 0U);
- if (stacksz >= 3) {
- struct rbnode *grandparent = stack[stacksz - 3];
- set_child(grandparent, get_side(grandparent, parent), child);
- }
- set_child(child, side, a);
- set_child(child, (side == 0U) ? 1U : 0U, parent);
- set_child(parent, side, b);
- stack[stacksz - 2] = child;
- stack[stacksz - 1] = parent;
- }
- /* The node at the top of the provided stack is red, and its parent is
- * too. Iteratively fix the tree so it becomes a valid red black tree
- * again
- */
- static void fix_extra_red(struct rbnode **stack, int stacksz)
- {
- while (stacksz > 1) {
- struct rbnode *node = stack[stacksz - 1];
- struct rbnode *parent = stack[stacksz - 2];
- /* Correct child colors are a precondition of the loop */
- CHECK((get_child(node, 0U) == NULL) ||
- is_black(get_child(node, 0U)));
- CHECK((get_child(node, 1U) == NULL) ||
- is_black(get_child(node, 1U)));
- if (is_black(parent)) {
- return;
- }
- /* We are guaranteed to have a grandparent if our
- * parent is red, as red nodes cannot be the root
- */
- CHECK(stacksz >= 2);
- struct rbnode *grandparent = stack[stacksz - 3];
- uint8_t side = get_side(grandparent, parent);
- struct rbnode *aunt = get_child(grandparent,
- (side == 0U) ? 1U : 0U);
- if ((aunt != NULL) && is_red(aunt)) {
- set_color(grandparent, RED);
- set_color(parent, BLACK);
- set_color(aunt, BLACK);
- /* We colored the grandparent red, which might
- * have a red parent, so continue iterating
- * from there.
- */
- stacksz -= 2;
- continue;
- }
- /* We can rotate locally to fix the whole tree. First
- * make sure that node is on the same side of parent
- * as parent is of grandparent.
- */
- uint8_t parent_side = get_side(parent, node);
- if (parent_side != side) {
- rotate(stack, stacksz);
- node = stack[stacksz - 1];
- }
- /* Rotate the grandparent with parent, swapping colors */
- rotate(stack, stacksz - 1);
- set_color(stack[stacksz - 3], BLACK);
- set_color(stack[stacksz - 2], RED);
- return;
- }
- /* If we exit the loop, it's because our node is now the root,
- * which must be black.
- */
- set_color(stack[0], BLACK);
- }
- void rb_insert(struct rbtree *tree, struct rbnode *node)
- {
- set_child(node, 0U, NULL);
- set_child(node, 1U, NULL);
- if (tree->root == NULL) {
- tree->root = node;
- tree->max_depth = 1;
- set_color(node, BLACK);
- return;
- }
- #ifdef CONFIG_MISRA_SANE
- struct rbnode **stack = &tree->iter_stack[0];
- #else
- struct rbnode *stack[tree->max_depth + 1];
- #endif
- int stacksz = find_and_stack(tree, node, stack);
- struct rbnode *parent = stack[stacksz - 1];
- uint8_t side = tree->lessthan_fn(node, parent) ? 0U : 1U;
- set_child(parent, side, node);
- set_color(node, RED);
- stack[stacksz++] = node;
- fix_extra_red(stack, stacksz);
- if (stacksz > tree->max_depth) {
- tree->max_depth = stacksz;
- }
- /* We may have rotated up into the root! */
- tree->root = stack[0];
- CHECK(is_black(tree->root));
- }
- /* Called for a node N (at the top of the stack) which after a
- * deletion operation is "missing a black" in its subtree. By
- * construction N must be black (because if it was red it would be
- * trivially fixed by recoloring and we wouldn't be here). Fixes up
- * the tree to preserve red/black rules. The "null_node" pointer is
- * for situations where we are removing a childless black node. The
- * tree munging needs a real node for simplicity, so we use it and
- * then clean it up (replace it with a simple NULL child in the
- * parent) when finished.
- */
- static void fix_missing_black(struct rbnode **stack, int stacksz,
- struct rbnode *null_node)
- {
- /* Loop upward until we reach the root */
- while (stacksz > 1) {
- struct rbnode *c0, *c1, *inner, *outer;
- struct rbnode *n = stack[stacksz - 1];
- struct rbnode *parent = stack[stacksz - 2];
- uint8_t n_side = get_side(parent, n);
- struct rbnode *sib = get_child(parent,
- (n_side == 0U) ? 1U : 0U);
- CHECK(is_black(n));
- /* Guarantee the sibling is black, rotating N down a
- * level if needed (after rotate() our parent is the
- * child of our previous-sibling, so N is lower in the
- * tree)
- */
- if (!is_black(sib)) {
- stack[stacksz - 1] = sib;
- rotate(stack, stacksz);
- set_color(parent, RED);
- set_color(sib, BLACK);
- stack[stacksz++] = n;
- parent = stack[stacksz - 2];
- sib = get_child(parent, (n_side == 0U) ? 1U : 0U);
- }
- CHECK(sib);
- /* Cases where the sibling has only black children
- * have simple resolutions
- */
- c0 = get_child(sib, 0U);
- c1 = get_child(sib, 1U);
- if (((c0 == NULL) || is_black(c0)) && ((c1 == NULL) ||
- is_black(c1))) {
- if (n == null_node) {
- set_child(parent, n_side, NULL);
- }
- set_color(sib, RED);
- if (is_black(parent)) {
- /* Balance the sibling's subtree by
- * coloring it red, then our parent
- * has a missing black so iterate
- * upward
- */
- stacksz--;
- continue;
- } else {
- /* Recoloring makes the whole tree OK */
- set_color(parent, BLACK);
- return;
- }
- }
- CHECK((c0 && is_red(c0)) || (c1 && is_red(c1)));
- /* We know sibling has at least one red child. Fix it
- * so that the far/outer position (i.e. on the
- * opposite side from N) is definitely red.
- */
- outer = get_child(sib, (n_side == 0U) ? 1U : 0U);
- if (!((outer != NULL) && is_red(outer))) {
- inner = get_child(sib, n_side);
- stack[stacksz - 1] = sib;
- stack[stacksz++] = inner;
- rotate(stack, stacksz);
- set_color(sib, RED);
- set_color(inner, BLACK);
- /* Restore stack state to have N on the top
- * and make sib reflect the new sibling
- */
- sib = stack[stacksz - 2];
- outer = get_child(sib, (n_side == 0U) ? 1U : 0U);
- stack[stacksz - 2] = n;
- stacksz--;
- }
- /* Finally, the sibling must have a red child in the
- * far/outer slot. We can rotate sib with our parent
- * and recolor to produce a valid tree.
- */
- CHECK(is_red(outer));
- set_color(sib, get_color(parent));
- set_color(parent, BLACK);
- set_color(outer, BLACK);
- stack[stacksz - 1] = sib;
- rotate(stack, stacksz);
- if (n == null_node) {
- set_child(parent, n_side, NULL);
- }
- return;
- }
- }
- void rb_remove(struct rbtree *tree, struct rbnode *node)
- {
- struct rbnode *tmp;
- #ifdef CONFIG_MISRA_SANE
- struct rbnode **stack = &tree->iter_stack[0];
- #else
- struct rbnode *stack[tree->max_depth + 1];
- #endif
- int stacksz = find_and_stack(tree, node, stack);
- if (node != stack[stacksz - 1]) {
- return;
- }
- /* We can only remove a node with zero or one child, if we
- * have two then pick the "biggest" child of side 0 (smallest
- * of 1 would work too) and swap our spot in the tree with
- * that one
- */
- if ((get_child(node, 0U) != NULL) && (get_child(node, 1U) != NULL)) {
- int stacksz0 = stacksz;
- struct rbnode *hiparent, *loparent;
- struct rbnode *node2 = get_child(node, 0U);
- hiparent = (stacksz > 1) ? stack[stacksz - 2] : NULL;
- stack[stacksz++] = node2;
- while (get_child(node2, 1U) != NULL) {
- node2 = get_child(node2, 1U);
- stack[stacksz++] = node2;
- }
- loparent = stack[stacksz - 2];
- /* Now swap the position of node/node2 in the tree.
- * Design note: this is a spot where being an
- * intrusive data structure hurts us fairly badly.
- * The trees you see in textbooks do this by swapping
- * the "data" pointers between the two nodes, but we
- * have a few special cases to check. In principle
- * this works by swapping the child pointers between
- * the nodes and retargetting the nodes pointing to
- * them from their parents, but: (1) the upper node
- * may be the root of the tree and not have a parent,
- * and (2) the lower node may be a direct child of the
- * upper node. Remember to swap the color bits of the
- * two nodes also. And of course we don't have parent
- * pointers, so the stack tracking this structure
- * needs to be swapped too!
- */
- if (hiparent != NULL) {
- set_child(hiparent, get_side(hiparent, node), node2);
- } else {
- tree->root = node2;
- }
- if (loparent == node) {
- set_child(node, 0U, get_child(node2, 0U));
- set_child(node2, 0U, node);
- } else {
- set_child(loparent, get_side(loparent, node2), node);
- tmp = get_child(node, 0U);
- set_child(node, 0U, get_child(node2, 0U));
- set_child(node2, 0U, tmp);
- }
- set_child(node2, 1U, get_child(node, 1U));
- set_child(node, 1U, NULL);
- tmp = stack[stacksz0 - 1];
- stack[stacksz0 - 1] = stack[stacksz - 1];
- stack[stacksz - 1] = tmp;
- enum rb_color ctmp = get_color(node);
- set_color(node, get_color(node2));
- set_color(node2, ctmp);
- }
- CHECK((get_child(node, 0U) == NULL) ||
- (get_child(node, 1U) == NULL));
- struct rbnode *child = get_child(node, 0U);
- if (child == NULL) {
- child = get_child(node, 1U);
- }
- /* Removing the root */
- if (stacksz < 2) {
- tree->root = child;
- if (child != NULL) {
- set_color(child, BLACK);
- } else {
- tree->max_depth = 0;
- }
- return;
- }
- struct rbnode *parent = stack[stacksz - 2];
- /* Special case: if the node to be removed is childless, then
- * we leave it in place while we do the missing black
- * rotations, which will replace it with a proper NULL when
- * they isolate it.
- */
- if (child == NULL) {
- if (is_black(node)) {
- fix_missing_black(stack, stacksz, node);
- } else {
- /* Red childless nodes can just be dropped */
- set_child(parent, get_side(parent, node), NULL);
- }
- } else {
- set_child(parent, get_side(parent, node), child);
- /* Check colors, if one was red (at least one must have been
- * black in a valid tree), then we're done.
- */
- __ASSERT(is_black(node) || is_black(child), "both nodes red?!");
- if (is_red(node) || is_red(child)) {
- set_color(child, BLACK);
- }
- }
- /* We may have rotated up into the root! */
- tree->root = stack[0];
- }
- #ifndef CONFIG_MISRA_SANE
- void z_rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie)
- {
- if (node != NULL) {
- z_rb_walk(get_child(node, 0U), visit_fn, cookie);
- visit_fn(node, cookie);
- z_rb_walk(get_child(node, 1U), visit_fn, cookie);
- }
- }
- #endif
- struct rbnode *z_rb_child(struct rbnode *node, uint8_t side)
- {
- return get_child(node, side);
- }
- int z_rb_is_black(struct rbnode *node)
- {
- return is_black(node);
- }
- bool rb_contains(struct rbtree *tree, struct rbnode *node)
- {
- struct rbnode *n = tree->root;
- while ((n != NULL) && (n != node)) {
- n = get_child(n, tree->lessthan_fn(n, node));
- }
- return n == node;
- }
- /* Pushes the node and its chain of left-side children onto the stack
- * in the foreach struct, returning the last node, which is the next
- * node to iterate. By construction node will always be a right child
- * or the root, so is_left must be false.
- */
- static inline struct rbnode *stack_left_limb(struct rbnode *n,
- struct _rb_foreach *f)
- {
- f->top++;
- f->stack[f->top] = n;
- f->is_left[f->top] = 0U;
- while ((n = get_child(n, 0U)) != NULL) {
- f->top++;
- f->stack[f->top] = n;
- f->is_left[f->top] = 1;
- }
- return f->stack[f->top];
- }
- /* The foreach tracking works via a dynamic stack allocated via
- * alloca(). The current node is found in stack[top] (and its parent
- * is thus stack[top-1]). The side of each stacked node from its
- * parent is stored in is_left[] (i.e. if is_left[top] is true, then
- * node/stack[top] is the left child of stack[top-1]). The special
- * case of top == -1 indicates that the stack is uninitialized and we
- * need to push an initial stack starting at the root.
- */
- struct rbnode *z_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f)
- {
- struct rbnode *n;
- if (tree->root == NULL) {
- return NULL;
- }
- /* Initialization condition, pick the leftmost child of the
- * root as our first node, initializing the stack on the way.
- */
- if (f->top == -1) {
- return stack_left_limb(tree->root, f);
- }
- /* The next child from a given node is the leftmost child of
- * it's right subtree if it has a right child
- */
- n = get_child(f->stack[f->top], 1U);
- if (n != NULL) {
- return stack_left_limb(n, f);
- }
- /* Otherwise if the node is a left child of its parent, the
- * next node is the parent (note that the root is stacked
- * above with is_left set to 0, so this condition still works
- * even if node has no parent).
- */
- if (f->is_left[f->top] != 0U) {
- return f->stack[--f->top];
- }
- /* If we had no left tree and are a right child then our
- * parent was already walked, so walk up the stack looking for
- * a left child (whose parent is unwalked, and thus next).
- */
- while ((f->top > 0) && (f->is_left[f->top] == 0U)) {
- f->top--;
- }
- f->top--;
- return (f->top >= 0) ? f->stack[f->top] : NULL;
- }
|