timeutil.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. /*
  2. * Copyright (c) 2019 Peter Bigot Consulting, LLC
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. * The time_days_from_civil function is derived directly from public
  8. * domain content written by Howard Hinnant and available at:
  9. * http://howardhinnant.github.io/date_algorithms.html#days_from_civil
  10. */
  11. #include <zephyr/types.h>
  12. #include <errno.h>
  13. #include <stddef.h>
  14. #include <sys/timeutil.h>
  15. /** Convert a civil (proleptic Gregorian) date to days relative to
  16. * 1970-01-01.
  17. *
  18. * @param y the calendar year
  19. * @param m the calendar month, in the range [1, 12]
  20. * @param d the day of the month, in the range [1, last_day_of_month(y, m)]
  21. *
  22. * @return the signed number of days between the specified day and
  23. * 1970-01-01
  24. *
  25. * @see http://howardhinnant.github.io/date_algorithms.html#days_from_civil
  26. */
  27. static int64_t time_days_from_civil(int64_t y,
  28. unsigned int m,
  29. unsigned int d)
  30. {
  31. y -= m <= 2;
  32. int64_t era = (y >= 0 ? y : y - 399) / 400;
  33. unsigned int yoe = y - era * 400;
  34. unsigned int doy = (153U * (m + (m > 2 ? -3 : 9)) + 2U) / 5U + d;
  35. unsigned int doe = yoe * 365U + yoe / 4U - yoe / 100U + doy;
  36. return era * 146097 + (time_t)doe - 719468;
  37. }
  38. int64_t timeutil_timegm64(const struct tm *tm)
  39. {
  40. int64_t y = 1900 + (int64_t)tm->tm_year;
  41. unsigned int m = tm->tm_mon + 1;
  42. unsigned int d = tm->tm_mday - 1;
  43. int64_t ndays = time_days_from_civil(y, m, d);
  44. int64_t time = tm->tm_sec;
  45. time += 60LL * (tm->tm_min + 60LL * tm->tm_hour);
  46. time += 86400LL * ndays;
  47. return time;
  48. }
  49. time_t timeutil_timegm(const struct tm *tm)
  50. {
  51. int64_t time = timeutil_timegm64(tm);
  52. time_t rv = (time_t)time;
  53. errno = 0;
  54. if ((sizeof(rv) == sizeof(int32_t))
  55. && ((time < (int64_t)INT32_MIN)
  56. || (time > (int64_t)INT32_MAX))) {
  57. errno = ERANGE;
  58. rv = -1;
  59. }
  60. return rv;
  61. }
  62. int timeutil_sync_state_update(struct timeutil_sync_state *tsp,
  63. const struct timeutil_sync_instant *inst)
  64. {
  65. int rv = -EINVAL;
  66. if (((tsp->base.ref == 0) && (inst->ref > 0))
  67. || ((inst->ref > tsp->base.ref)
  68. && (inst->local > tsp->base.local))) {
  69. if (tsp->base.ref == 0) {
  70. tsp->base = *inst;
  71. tsp->latest = (struct timeutil_sync_instant){};
  72. tsp->skew = 1.0f;
  73. rv = 0;
  74. } else {
  75. tsp->latest = *inst;
  76. rv = 1;
  77. }
  78. }
  79. return rv;
  80. }
  81. int timeutil_sync_state_set_skew(struct timeutil_sync_state *tsp, float skew,
  82. const struct timeutil_sync_instant *base)
  83. {
  84. int rv = -EINVAL;
  85. if (skew > 0) {
  86. tsp->skew = skew;
  87. if (base != NULL) {
  88. tsp->base = *base;
  89. tsp->latest = (struct timeutil_sync_instant){};
  90. }
  91. rv = 0;
  92. }
  93. return rv;
  94. }
  95. float timeutil_sync_estimate_skew(const struct timeutil_sync_state *tsp)
  96. {
  97. float rv = 0;
  98. if ((tsp->base.ref != 0) && (tsp->latest.ref != 0)
  99. && (tsp->latest.local > tsp->base.local)) {
  100. const struct timeutil_sync_config *cfg = tsp->cfg;
  101. double ref_delta = tsp->latest.ref - tsp->base.ref;
  102. double local_delta = tsp->latest.local - tsp->base.local;
  103. rv = ref_delta * cfg->local_Hz / local_delta / cfg->ref_Hz;
  104. }
  105. return rv;
  106. }
  107. int timeutil_sync_ref_from_local(const struct timeutil_sync_state *tsp,
  108. uint64_t local, uint64_t *refp)
  109. {
  110. int rv = -EINVAL;
  111. if ((tsp->skew > 0) && (tsp->base.ref > 0) && (refp != NULL)) {
  112. const struct timeutil_sync_config *cfg = tsp->cfg;
  113. int64_t local_delta = local - tsp->base.local;
  114. /* (x * 1.0) != x for large values of x.
  115. * Therefore only apply the multiplication if the skew is not one.
  116. */
  117. if (tsp->skew != 1.0f) {
  118. local_delta *= (double)tsp->skew;
  119. }
  120. int64_t ref_delta = local_delta * cfg->ref_Hz / cfg->local_Hz;
  121. int64_t ref_abs = (int64_t)tsp->base.ref + ref_delta;
  122. if (ref_abs < 0) {
  123. rv = -ERANGE;
  124. } else {
  125. *refp = ref_abs;
  126. rv = (int)(tsp->skew != 1.0f);
  127. }
  128. }
  129. return rv;
  130. }
  131. int timeutil_sync_local_from_ref(const struct timeutil_sync_state *tsp,
  132. uint64_t ref, int64_t *localp)
  133. {
  134. int rv = -EINVAL;
  135. if ((tsp->skew > 0) && (tsp->base.ref > 0) && (localp != NULL)) {
  136. const struct timeutil_sync_config *cfg = tsp->cfg;
  137. int64_t ref_delta = (int64_t)(ref - tsp->base.ref);
  138. /* (x / 1.0) != x for large values of x.
  139. * Therefore only apply the division if the skew is not one.
  140. */
  141. int64_t local_delta = (ref_delta * cfg->local_Hz) / cfg->ref_Hz;
  142. if (tsp->skew != 1.0f) {
  143. local_delta /= (double)tsp->skew;
  144. }
  145. int64_t local_abs = (int64_t)tsp->base.local
  146. + (int64_t)local_delta;
  147. *localp = local_abs;
  148. rv = (int)(tsp->skew != 1.0f);
  149. }
  150. return rv;
  151. }
  152. int32_t timeutil_sync_skew_to_ppb(float skew)
  153. {
  154. int64_t ppb64 = (int64_t)((1.0 - (double)skew) * 1E9);
  155. int32_t ppb32 = (int32_t)ppb64;
  156. return (ppb64 == ppb32) ? ppb32 : INT32_MIN;
  157. }