tjpgd.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. /*----------------------------------------------------------------------------/
  2. / TJpgDec - Tiny JPEG Decompressor R0.03 (C)ChaN, 2021
  3. /-----------------------------------------------------------------------------/
  4. / The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
  5. / This is a free software that opened for education, research and commercial
  6. / developments under license policy of following terms.
  7. /
  8. / Copyright (C) 2021, ChaN, all right reserved.
  9. /
  10. / * The TJpgDec module is a free software and there is NO WARRANTY.
  11. / * No restriction on use. You can use, modify and redistribute it for
  12. / personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
  13. / * Redistributions of source code must retain the above copyright notice.
  14. /
  15. /-----------------------------------------------------------------------------/
  16. / Oct 04, 2011 R0.01 First release.
  17. / Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq.
  18. / Sep 03, 2012 R0.01b Added JD_TBLCLIP option.
  19. / Mar 16, 2019 R0.01c Supprted stdint.h.
  20. / Jul 01, 2020 R0.01d Fixed wrong integer type usage.
  21. / May 08, 2021 R0.02 Supprted grayscale image. Separated configuration options.
  22. / Jun 11, 2021 R0.02a Some performance improvement.
  23. / Jul 01, 2021 R0.03 Added JD_FASTDECODE option.
  24. / Some performance improvement.
  25. /----------------------------------------------------------------------------*/
  26. #include "tjpgd.h"
  27. #include "hv_vos_Log.h"
  28. #include "hv_vos_Time.h"
  29. #include "hv_comm_DataType.h"
  30. #if JD_FASTDECODE == 2
  31. #define HUFF_BIT 10 /* Bit length to apply fast huffman decode */
  32. #define HUFF_LEN (1 << HUFF_BIT)
  33. #define HUFF_MASK (HUFF_LEN - 1)
  34. #endif
  35. /*-----------------------------------------------*/
  36. /* Zigzag-order to raster-order conversion table */
  37. /*-----------------------------------------------*/
  38. static const uint8_t Zig[64] __attribute__((aligned(32)))= { /* Zigzag-order to raster-order conversion table */
  39. 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
  40. 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
  41. 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
  42. 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
  43. };
  44. /*-------------------------------------------------*/
  45. /* Input scale factor of Arai algorithm */
  46. /* (scaled up 16 bits for fixed point operations) */
  47. /*-------------------------------------------------*/
  48. static const uint16_t Ipsf[64] __attribute__((aligned(32)))= { /* See also aa_idct.png */
  49. (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
  50. (uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192),
  51. (uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192),
  52. (uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192),
  53. (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
  54. (uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192),
  55. (uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192),
  56. (uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192)
  57. };
  58. /*---------------------------------------------*/
  59. /* Conversion table for fast clipping process */
  60. /*---------------------------------------------*/
  61. #if JD_TBLCLIP
  62. #define BYTECLIP(v) Clip8[(unsigned int)(v) & 0x3FF]
  63. static const uint8_t Clip8[1024] __attribute__((aligned(32)))= {
  64. /* 0..255 */
  65. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  66. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  67. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  68. 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
  69. 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
  70. 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
  71. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
  72. 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
  73. /* 256..511 */
  74. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  75. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  76. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  77. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  78. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  79. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  80. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  81. 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
  82. /* -512..-257 */
  83. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  84. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  85. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  86. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  87. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  88. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  89. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  90. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  91. /* -256..-1 */
  92. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  93. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  94. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  95. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  96. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  97. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  98. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  99. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  100. };
  101. #else /* JD_TBLCLIP */
  102. static uint8_t BYTECLIP (int val)
  103. {
  104. if (val < 0) return 0;
  105. else if (val > 255) return 255;
  106. return (uint8_t)val;
  107. }
  108. #endif
  109. /*-----------------------------------------------------------------------*/
  110. /* Allocate a memory block from memory pool */
  111. /*-----------------------------------------------------------------------*/
  112. static void* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */
  113. JDEC* jd, /* Pointer to the decompressor object */
  114. size_t ndata /* Number of bytes to allocate */
  115. )
  116. {
  117. char *rp = 0;
  118. //ndata = (ndata + 3) & ~3; /* Align block size to the word boundary */
  119. ndata = (ndata + 31) & ~31; /* Align block size to the word boundary */
  120. if (jd->sz_pool >= ndata) {
  121. jd->sz_pool -= ndata;
  122. rp = (char*)jd->pool; /* Get start of available memory pool */
  123. jd->pool = (void*)(rp + ndata); /* Allocate requierd bytes */
  124. }
  125. return (void*)rp; /* Return allocated memory block (NULL:no memory to allocate) */
  126. }
  127. /*-----------------------------------------------------------------------*/
  128. /* Create de-quantization and prescaling tables with a DQT segment */
  129. /*-----------------------------------------------------------------------*/
  130. static JRESULT create_qt_tbl ( /* 0:OK, !0:Failed */
  131. register JDEC* jd, /* Pointer to the decompressor object */
  132. register const uint8_t* data, /* Pointer to the quantizer tables */
  133. size_t ndata /* Size of input data */
  134. )
  135. {
  136. register unsigned int i, zi;
  137. register uint8_t d;
  138. register int32_t *pb;
  139. while (ndata) { /* Process all tables in the segment */
  140. if (ndata < 65) return JDR_FMT1; /* Err: table size is unaligned */
  141. ndata -= 65;
  142. d = *data++; /* Get table property */
  143. if (d & 0xF0) return JDR_FMT1; /* Err: not 8-bit resolution */
  144. i = d & 3; /* Get table ID */
  145. pb = alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */
  146. if (!pb) return JDR_MEM1; /* Err: not enough memory */
  147. jd->qttbl[i] = pb; /* Register the table */
  148. for (i = 0; i < 64; i++) { /* Load the table */
  149. zi = Zig[i]; /* Zigzag-order to raster-order conversion */
  150. pb[zi] = (int32_t)((uint32_t)*data++ * Ipsf[zi]); /* Apply scale factor of Arai algorithm to the de-quantizers */
  151. }
  152. }
  153. return JDR_OK;
  154. }
  155. /*-----------------------------------------------------------------------*/
  156. /* Create huffman code tables with a DHT segment */
  157. /*-----------------------------------------------------------------------*/
  158. static JRESULT create_huffman_tbl ( /* 0:OK, !0:Failed */
  159. register JDEC* jd, /* Pointer to the decompressor object */
  160. register const uint8_t* data, /* Pointer to the packed huffman tables */
  161. size_t ndata /* Size of input data */
  162. )
  163. {
  164. register unsigned int i, j, b, cls, num;
  165. size_t np;
  166. register uint8_t d, *pb, *pd;
  167. uint16_t hc, *ph;
  168. while (ndata) { /* Process all tables in the segment */
  169. if (ndata < 17) return JDR_FMT1; /* Err: wrong data size */
  170. ndata -= 17;
  171. d = *data++; /* Get table number and class */
  172. if (d & 0xEE) return JDR_FMT1; /* Err: invalid class/number */
  173. cls = d >> 4; num = d & 0x0F; /* class = dc(0)/ac(1), table number = 0/1 */
  174. pb = alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */
  175. if (!pb) return JDR_MEM1; /* Err: not enough memory */
  176. jd->huffbits[num][cls] = pb;
  177. for (np = i = 0; i < 16; i++) { /* Load number of patterns for 1 to 16-bit code */
  178. np += (pb[i] = *data++); /* Get sum of code words for each code */
  179. }
  180. ph = alloc_pool(jd, np * sizeof (uint16_t));/* Allocate a memory block for the code word table */
  181. if (!ph) return JDR_MEM1; /* Err: not enough memory */
  182. jd->huffcode[num][cls] = ph;
  183. hc = 0;
  184. for (j = i = 0; i < 16; i++) { /* Re-build huffman code word table */
  185. b = pb[i];
  186. while (b--) ph[j++] = hc++;
  187. hc <<= 1;
  188. }
  189. if (ndata < np) return JDR_FMT1; /* Err: wrong data size */
  190. ndata -= np;
  191. pd = alloc_pool(jd, np); /* Allocate a memory block for the decoded data */
  192. if (!pd) return JDR_MEM1; /* Err: not enough memory */
  193. jd->huffdata[num][cls] = pd;
  194. for (i = 0; i < np; i++) { /* Load decoded data corresponds to each code word */
  195. d = *data++;
  196. if (!cls && d > 11) return JDR_FMT1;
  197. pd[i] = d;
  198. }
  199. #if JD_FASTDECODE == 2
  200. { /* Create fast huffman decode table */
  201. register unsigned int span, td, ti;
  202. register uint16_t *tbl_ac = 0;
  203. register uint8_t *tbl_dc = 0;
  204. if (cls) {
  205. tbl_ac = alloc_pool(jd, HUFF_LEN * sizeof (uint16_t)); /* LUT for AC elements */
  206. if (!tbl_ac) return JDR_MEM1; /* Err: not enough memory */
  207. jd->hufflut_ac[num] = tbl_ac;
  208. memset(tbl_ac, 0xFF, HUFF_LEN * sizeof (uint16_t)); /* Default value (0xFFFF: may be long code) */
  209. } else {
  210. tbl_dc = alloc_pool(jd, HUFF_LEN * sizeof (uint8_t)); /* LUT for AC elements */
  211. if (!tbl_dc) return JDR_MEM1; /* Err: not enough memory */
  212. jd->hufflut_dc[num] = tbl_dc;
  213. memset(tbl_dc, 0xFF, HUFF_LEN * sizeof (uint8_t)); /* Default value (0xFF: may be long code) */
  214. }
  215. for (i = b = 0; b < HUFF_BIT; b++) { /* Create LUT */
  216. for (j = pb[b]; j; j--) {
  217. ti = ph[i] << (HUFF_BIT - 1 - b) & HUFF_MASK; /* Index of input pattern for the code */
  218. if (cls) {
  219. td = pd[i++] | ((b + 1) << 8); /* b15..b8: code length, b7..b0: zero run and data length */
  220. for (span = 1 << (HUFF_BIT - 1 - b); span; span--, tbl_ac[ti++] = (uint16_t)td) ;
  221. } else {
  222. td = pd[i++] | ((b + 1) << 4); /* b7..b4: code length, b3..b0: data length */
  223. for (span = 1 << (HUFF_BIT - 1 - b); span; span--, tbl_dc[ti++] = (uint8_t)td) ;
  224. }
  225. }
  226. }
  227. jd->longofs[num][cls] = i; /* Code table offset for long code */
  228. }
  229. #endif
  230. }
  231. return JDR_OK;
  232. }
  233. /*-----------------------------------------------------------------------*/
  234. /* Extract a huffman decoded data from input stream */
  235. /*-----------------------------------------------------------------------*/
  236. static int huffext ( /* >=0: decoded data, <0: error code */
  237. register JDEC* jd, /* Pointer to the decompressor object */
  238. register unsigned int id, /* Table ID (0:Y, 1:C) */
  239. register unsigned int cls /* Table class (0:DC, 1:AC) */
  240. )
  241. {
  242. register size_t dc = jd->dctr;
  243. register uint8_t *dp = jd->dptr;
  244. register unsigned int d, flg = 0;
  245. #if JD_FASTDECODE == 0
  246. uint8_t bm, nd, bl;
  247. const uint8_t *hb = jd->huffbits[id][cls]; /* Bit distribution table */
  248. const uint16_t *hc = jd->huffcode[id][cls]; /* Code word table */
  249. const uint8_t *hd = jd->huffdata[id][cls]; /* Data table */
  250. bm = jd->dbit; /* Bit mask to extract */
  251. d = 0; bl = 16; /* Max code length */
  252. do {
  253. if (!bm) { /* Next byte? */
  254. if (!dc) { /* No input data is available, re-fill input buffer */
  255. dp = jd->inbuf; /* Top of input buffer */
  256. dc = jd->infunc(jd, dp, JD_SZBUF);
  257. if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */
  258. } else {
  259. dp++; /* Next data ptr */
  260. }
  261. dc--; /* Decrement number of available bytes */
  262. if (flg) { /* In flag sequence? */
  263. flg = 0; /* Exit flag sequence */
  264. if (*dp != 0) return 0 - (int)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
  265. *dp = 0xFF; /* The flag is a data 0xFF */
  266. } else {
  267. if (*dp == 0xFF) { /* Is start of flag sequence? */
  268. flg = 1; continue; /* Enter flag sequence, get trailing byte */
  269. }
  270. }
  271. bm = 0x80; /* Read from MSB */
  272. }
  273. d <<= 1; /* Get a bit */
  274. if (*dp & bm) d++;
  275. bm >>= 1;
  276. for (nd = *hb++; nd; nd--) { /* Search the code word in this bit length */
  277. if (d == *hc++) { /* Matched? */
  278. jd->dbit = bm; jd->dctr = dc; jd->dptr = dp;
  279. return *hd; /* Return the decoded data */
  280. }
  281. hd++;
  282. }
  283. bl--;
  284. } while (bl);
  285. #else
  286. register const uint8_t *hb, *hd;
  287. register const uint16_t *hc;
  288. register unsigned int nc, bl, wbit = jd->dbit & 0x1f;
  289. register uint32_t w = jd->wreg & ((1UL << wbit) - 1);
  290. while (wbit < 16) { /* Prepare 16 bits into the working register */
  291. if (__builtin_expect(jd->marker, 0)) {
  292. d = 0xFF; /* Input stream has stalled for a marker. Generate stuff bits */
  293. } else {
  294. if (__builtin_expect(!dc, 0)) { /* Buffer empty, re-fill input buffer */
  295. dp = jd->inbuf; /* Top of input buffer */
  296. dc = jd->infunc(jd, dp, JD_SZBUF);
  297. if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */
  298. }
  299. d = *dp++; dc--;
  300. if (flg) { /* In flag sequence? */
  301. flg = 0; /* Exit flag sequence */
  302. if (d != 0) jd->marker = d; /* Not an escape of 0xFF but a marker */
  303. d = 0xFF;
  304. } else {
  305. if (d == 0xFF) { /* Is start of flag sequence? */
  306. flg = 1; continue; /* Enter flag sequence, get trailing byte */
  307. }
  308. }
  309. }
  310. w = w << 8 | d; /* Shift 8 bits in the working register */
  311. wbit += 8;
  312. }
  313. jd->dctr = dc; jd->dptr = dp;
  314. jd->wreg = w;
  315. #if JD_FASTDECODE == 2
  316. /* Table serch for the short codes */
  317. d = (unsigned int)(w >> (wbit - HUFF_BIT)); /* Short code as table index */
  318. if (cls) { /* AC element */
  319. d = jd->hufflut_ac[id][d]; /* Table decode */
  320. if (d != 0xFFFF) { /* It is done if hit in short code */
  321. jd->dbit = wbit - (d >> 8); /* Snip the code length */
  322. return d & 0xFF; /* b7..0: zero run and following data bits */
  323. }
  324. } else { /* DC element */
  325. d = jd->hufflut_dc[id][d]; /* Table decode */
  326. if (d != 0xFF) { /* It is done if hit in short code */
  327. jd->dbit = wbit - (d >> 4); /* Snip the code length */
  328. return d & 0xF; /* b3..0: following data bits */
  329. }
  330. }
  331. /* Incremental serch for the codes longer than HUFF_BIT */
  332. hb = jd->huffbits[id][cls] + HUFF_BIT; /* Bit distribution table */
  333. hc = jd->huffcode[id][cls] + jd->longofs[id][cls]; /* Code word table */
  334. hd = jd->huffdata[id][cls] + jd->longofs[id][cls]; /* Data table */
  335. bl = HUFF_BIT + 1;
  336. #else
  337. /* Incremental serch for all codes */
  338. hb = jd->huffbits[id][cls]; /* Bit distribution table */
  339. hc = jd->huffcode[id][cls]; /* Code word table */
  340. hd = jd->huffdata[id][cls]; /* Data table */
  341. bl = 1;
  342. #endif
  343. for ( ; bl <= 16; bl++) { /* Incremental search */
  344. nc = *hb++;
  345. if (nc) {
  346. d = w >> (wbit - bl);
  347. do { /* Search the code word in this bit length */
  348. if (d == *hc++) { /* Matched? */
  349. jd->dbit = wbit - bl; /* Snip the huffman code */
  350. return *hd; /* Return the decoded data */
  351. }
  352. hd++;
  353. } while (--nc);
  354. }
  355. }
  356. #endif
  357. return 0 - (int)JDR_FMT1; /* Err: code not found (may be collapted data) */
  358. }
  359. /*-----------------------------------------------------------------------*/
  360. /* Extract N bits from input stream */
  361. /*-----------------------------------------------------------------------*/
  362. static int bitext ( /* >=0: extracted data, <0: error code */
  363. register JDEC* jd, /* Pointer to the decompressor object */
  364. register unsigned int nbit /* Number of bits to extract (1 to 16) */
  365. )
  366. {
  367. register size_t dc = jd->dctr;
  368. register uint8_t *dp = jd->dptr;
  369. register unsigned int d, flg = 0;
  370. #if JD_FASTDECODE == 0
  371. register uint8_t mbit = jd->dbit;
  372. d = 0;
  373. do {
  374. if (!mbit) { /* Next byte? */
  375. if (!dc) { /* No input data is available, re-fill input buffer */
  376. dp = jd->inbuf; /* Top of input buffer */
  377. dc = jd->infunc(jd, dp, JD_SZBUF);
  378. if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */
  379. } else {
  380. dp++; /* Next data ptr */
  381. }
  382. dc--; /* Decrement number of available bytes */
  383. if (flg) { /* In flag sequence? */
  384. flg = 0; /* Exit flag sequence */
  385. if (*dp != 0) return 0 - (int)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
  386. *dp = 0xFF; /* The flag is a data 0xFF */
  387. } else {
  388. if (*dp == 0xFF) { /* Is start of flag sequence? */
  389. flg = 1; continue; /* Enter flag sequence */
  390. }
  391. }
  392. mbit = 0x80; /* Read from MSB */
  393. }
  394. d <<= 1; /* Get a bit */
  395. if (*dp & mbit) d |= 1;
  396. mbit >>= 1;
  397. nbit--;
  398. } while (nbit);
  399. jd->dbit = mbit; jd->dctr = dc; jd->dptr = dp;
  400. return (int)d;
  401. #else
  402. //register unsigned int wbit = jd->dbit % 32;
  403. register unsigned int wbit = jd->dbit & 0x1f;
  404. register uint32_t w = jd->wreg & ((1UL << wbit) - 1);
  405. while (wbit < nbit) { /* Prepare nbit bits into the working register */
  406. if (jd->marker) {
  407. d = 0xFF; /* Input stream stalled, generate stuff bits */
  408. } else {
  409. if (!dc) { /* Buffer empty, re-fill input buffer */
  410. dp = jd->inbuf; /* Top of input buffer */
  411. dc = jd->infunc(jd, dp, JD_SZBUF);
  412. if (!dc) return 0 - (int)JDR_INP; /* Err: read error or wrong stream termination */
  413. }
  414. d = *dp++; dc--;
  415. if (flg) { /* In flag sequence? */
  416. flg = 0; /* Exit flag sequence */
  417. if (d != 0) jd->marker = d; /* Not an escape of 0xFF but a marker */
  418. d = 0xFF;
  419. } else {
  420. if (d == 0xFF) { /* Is start of flag sequence? */
  421. flg = 1; continue; /* Enter flag sequence, get trailing byte */
  422. }
  423. }
  424. }
  425. w = w << 8 | d; /* Get 8 bits into the working register */
  426. wbit += 8;
  427. }
  428. jd->wreg = w; jd->dbit = wbit - nbit;
  429. jd->dctr = dc; jd->dptr = dp;
  430. return (int)(w >> ((wbit - nbit) % 32));
  431. #endif
  432. }
  433. /*-----------------------------------------------------------------------*/
  434. /* Process restart interval */
  435. /*-----------------------------------------------------------------------*/
  436. static JRESULT restart (
  437. register JDEC* jd, /* Pointer to the decompressor object */
  438. uint16_t rstn /* Expected restert sequense number */
  439. )
  440. {
  441. unsigned int i;
  442. register uint8_t *dp = jd->dptr;
  443. register size_t dc = jd->dctr;
  444. #if JD_FASTDECODE == 0
  445. uint16_t d = 0;
  446. /* Get two bytes from the input stream */
  447. for (i = 0; i < 2; i++) {
  448. if (!dc) { /* No input data is available, re-fill input buffer */
  449. dp = jd->inbuf;
  450. dc = jd->infunc(jd, dp, JD_SZBUF);
  451. if (!dc) return JDR_INP;
  452. } else {
  453. dp++;
  454. }
  455. dc--;
  456. d = d << 8 | *dp; /* Get a byte */
  457. }
  458. jd->dptr = dp; jd->dctr = dc; jd->dbit = 0;
  459. /* Check the marker */
  460. if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) {
  461. return JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */
  462. }
  463. #else
  464. register uint16_t marker;
  465. if (jd->marker) { /* Generate a maker if it has been detected */
  466. marker = 0xFF00 | jd->marker;
  467. jd->marker = 0;
  468. } else {
  469. marker = 0;
  470. for (i = 0; i < 2; i++) { /* Get a restart marker */
  471. if (!dc) { /* No input data is available, re-fill input buffer */
  472. dp = jd->inbuf;
  473. dc = jd->infunc(jd, dp, JD_SZBUF);
  474. if (!dc) return JDR_INP;
  475. }
  476. marker = (marker << 8) | *dp++; /* Get a byte */
  477. dc--;
  478. }
  479. jd->dptr = dp; jd->dctr = dc;
  480. }
  481. /* Check the marker */
  482. if ((marker & 0xFFD8) != 0xFFD0 || (marker & 7) != (rstn & 7)) {
  483. return JDR_FMT1; /* Err: expected RSTn marker was not detected (may be collapted data) */
  484. }
  485. jd->dbit = 0; /* Discard stuff bits */
  486. #endif
  487. jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Reset DC offset */
  488. return JDR_OK;
  489. }
  490. /*-----------------------------------------------------------------------*/
  491. /* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */
  492. /*-----------------------------------------------------------------------*/
  493. static void block_idct (
  494. register int32_t* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
  495. register jd_yuv_t* dst /* Pointer to the destination to store the block as byte array */
  496. )
  497. {
  498. register const int32_t M13 = (int32_t)(1.41421*4096), M2 = (int32_t)(1.08239*4096), M4 = (int32_t)(2.61313*4096), M5 = (int32_t)(1.84776*4096);
  499. int i;
  500. register int32_t v0, v1, v2, v3, v4, v5, v6, v7;
  501. register int32_t t10, t11, t12, t13;
  502. /* Process columns */
  503. for (i = 0; i < 8; i++) {
  504. v0 = src[8 * 0]; /* Get even elements */
  505. v1 = src[8 * 2];
  506. v2 = src[8 * 4];
  507. v3 = src[8 * 6];
  508. t10 = v0 + v2; /* Process the even elements */
  509. t12 = v0 - v2;
  510. t11 = (v1 - v3) * M13 >> 12;
  511. v3 += v1;
  512. t11 -= v3;
  513. v0 = t10 + v3;
  514. v3 = t10 - v3;
  515. v1 = t11 + t12;
  516. v2 = t12 - t11;
  517. v4 = src[8 * 7]; /* Get odd elements */
  518. v5 = src[8 * 1];
  519. v6 = src[8 * 5];
  520. v7 = src[8 * 3];
  521. t10 = v5 - v4; /* Process the odd elements */
  522. t11 = v5 + v4;
  523. t12 = v6 - v7;
  524. v7 += v6;
  525. v5 = (t11 - v7) * M13 >> 12;
  526. v7 += t11;
  527. t13 = (t10 + t12) * M5 >> 12;
  528. v4 = t13 - (t10 * M2 >> 12);
  529. v6 = t13 - (t12 * M4 >> 12) - v7;
  530. v5 -= v6;
  531. v4 -= v5;
  532. #if 1
  533. src[8 * 0] = v0 + v7; /* Write-back transformed values */
  534. src[8 * 7] = v0 - v7;
  535. src[8 * 1] = v1 + v6;
  536. src[8 * 6] = v1 - v6;
  537. src[8 * 2] = v2 + v5;
  538. src[8 * 5] = v2 - v5;
  539. src[8 * 3] = v3 + v4;
  540. src[8 * 4] = v3 - v4;
  541. #else
  542. src[8 * 0] = v0 + v7; /* Write-back transformed values */
  543. src[8 * 1] = v1 + v6;
  544. src[8 * 2] = v2 + v5;
  545. src[8 * 3] = v3 + v4;
  546. src[8 * 4] = v3 - v4;
  547. src[8 * 5] = v2 - v5;
  548. src[8 * 6] = v1 - v6;
  549. src[8 * 7] = v0 - v7;
  550. #endif
  551. src++; /* Next column */
  552. }
  553. /* Process rows */
  554. src -= 8;
  555. for (i = 0; i < 8; i++) {
  556. v0 = src[0] + (128L << 8); /* Get even elements (remove DC offset (-128) here) */
  557. v1 = src[2];
  558. v2 = src[4];
  559. v3 = src[6];
  560. t10 = v0 + v2; /* Process the even elements */
  561. t12 = v0 - v2;
  562. t11 = (v1 - v3) * M13 >> 12;
  563. v3 += v1;
  564. t11 -= v3;
  565. v0 = t10 + v3;
  566. v3 = t10 - v3;
  567. v1 = t11 + t12;
  568. v2 = t12 - t11;
  569. v4 = src[7]; /* Get odd elements */
  570. v5 = src[1];
  571. v6 = src[5];
  572. v7 = src[3];
  573. t10 = v5 - v4; /* Process the odd elements */
  574. t11 = v5 + v4;
  575. t12 = v6 - v7;
  576. v7 += v6;
  577. v5 = (t11 - v7) * M13 >> 12;
  578. v7 += t11;
  579. t13 = (t10 + t12) * M5 >> 12;
  580. v4 = t13 - (t10 * M2 >> 12);
  581. v6 = t13 - (t12 * M4 >> 12) - v7;
  582. v5 -= v6;
  583. v4 -= v5;
  584. /* Descale the transformed values 8 bits and output a row */
  585. #if JD_FASTDECODE >= 1
  586. #if 1
  587. dst[0] = (int16_t)((v0 + v7) >> 8);
  588. dst[7] = (int16_t)((v0 - v7) >> 8);
  589. dst[1] = (int16_t)((v1 + v6) >> 8);
  590. dst[6] = (int16_t)((v1 - v6) >> 8);
  591. dst[2] = (int16_t)((v2 + v5) >> 8);
  592. dst[5] = (int16_t)((v2 - v5) >> 8);
  593. dst[3] = (int16_t)((v3 + v4) >> 8);
  594. dst[4] = (int16_t)((v3 - v4) >> 8);
  595. #else
  596. dst[0] = (int16_t)((v0 + v7) >> 8);
  597. dst[1] = (int16_t)((v1 + v6) >> 8);
  598. dst[2] = (int16_t)((v2 + v5) >> 8);
  599. dst[3] = (int16_t)((v3 + v4) >> 8);
  600. dst[4] = (int16_t)((v3 - v4) >> 8);
  601. dst[5] = (int16_t)((v2 - v5) >> 8);
  602. dst[6] = (int16_t)((v1 - v6) >> 8);
  603. dst[7] = (int16_t)((v0 - v7) >> 8);
  604. #endif
  605. #else
  606. dst[0] = BYTECLIP((v0 + v7) >> 8);
  607. dst[7] = BYTECLIP((v0 - v7) >> 8);
  608. dst[1] = BYTECLIP((v1 + v6) >> 8);
  609. dst[6] = BYTECLIP((v1 - v6) >> 8);
  610. dst[2] = BYTECLIP((v2 + v5) >> 8);
  611. dst[5] = BYTECLIP((v2 - v5) >> 8);
  612. dst[3] = BYTECLIP((v3 + v4) >> 8);
  613. dst[4] = BYTECLIP((v3 - v4) >> 8);
  614. #endif
  615. dst += 8; src += 8; /* Next row */
  616. }
  617. }
  618. /*-----------------------------------------------------------------------*/
  619. /* Load all blocks in an MCU into working buffer */
  620. /*-----------------------------------------------------------------------*/
  621. static JRESULT mcu_load (
  622. register JDEC* jd /* Pointer to the decompressor object */
  623. )
  624. {
  625. register int32_t *tmp = (int32_t*)jd->workbuf; /* Block working buffer for de-quantize and IDCT */
  626. register int d, e;
  627. register unsigned int blk, nby, i, bc, z, id, cmp;
  628. register jd_yuv_t *bp;
  629. register const int32_t *dqf;
  630. nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */
  631. bp = jd->mcubuf; /* Pointer to the first block of MCU */
  632. for (blk = 0; blk < nby + 2; blk++) { /* Get nby Y blocks and two C blocks */
  633. cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */
  634. //if (cmp && jd->ncomp != 3) { /* Clear C blocks if not exist (monochrome image) */
  635. if (__builtin_expect((cmp && jd->ncomp != 3), 0)) { /* Clear C blocks if not exist (monochrome image) */
  636. for (i = 0; i < 64; bp[i++] = 128) ;
  637. } else { /* Load Y/C blocks from input stream */
  638. id = cmp ? 1 : 0; /* Huffman table ID of this component */
  639. /* Extract a DC element from input stream */
  640. d = huffext(jd, id, 0); /* Extract a huffman coded data (bit length) */
  641. //if (d < 0) return (JRESULT)(0 - d); /* Err: invalid code or input */
  642. if (__builtin_expect(d < 0, 0)) return (JRESULT)(0 - d); /* Err: invalid code or input */
  643. bc = (unsigned int)d;
  644. d = jd->dcv[cmp]; /* DC value of previous block */
  645. if (bc) { /* If there is any difference from previous block */
  646. e = bitext(jd, bc); /* Extract data bits */
  647. if (e < 0) return (JRESULT)(0 - e); /* Err: input */
  648. bc = 1 << (bc - 1); /* MSB position */
  649. if (!(e & bc)) e -= (bc << 1) - 1; /* Restore negative value if needed */
  650. d += e; /* Get current value */
  651. jd->dcv[cmp] = (int16_t)d; /* Save current DC value for next block */
  652. }
  653. dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */
  654. tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
  655. /* Extract following 63 AC elements from input stream */
  656. memset(&tmp[1], 0, 63 * sizeof (int32_t)); /* Initialize all AC elements */
  657. z = 1; /* Top of the AC elements (in zigzag-order) */
  658. do {
  659. d = huffext(jd, id, 1); /* Extract a huffman coded value (zero runs and bit length) */
  660. if (d == 0) break; /* EOB? */
  661. if (d < 0) return (JRESULT)(0 - d); /* Err: invalid code or input error */
  662. bc = (unsigned int)d;
  663. z += bc >> 4; /* Skip leading zero run */
  664. if (z >= 64) return JDR_FMT1; /* Too long zero run */
  665. if (bc &= 0x0F) { /* Bit length? */
  666. d = bitext(jd, bc); /* Extract data bits */
  667. if (d < 0) return (JRESULT)(0 - d); /* Err: input device */
  668. bc = 1 << (bc - 1); /* MSB position */
  669. if (!(d & bc)) d -= (bc << 1) - 1; /* Restore negative value if needed */
  670. i = Zig[z]; /* Get raster-order index */
  671. tmp[i] = d * dqf[i] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
  672. }
  673. } while (++z < 64); /* Next AC element */
  674. //if (JD_FORMAT != 2 || !cmp) { /* C components may not be processed if in grayscale output */
  675. if (jd->format != 2 || !cmp) { /* C components may not be processed if in grayscale output */
  676. if (z == 1 || (JD_USE_SCALE && jd->scale == 3)) { /* If no AC element or scale ratio is 1/8, IDCT can be ommited and the block is filled with DC value */
  677. d = (jd_yuv_t)((*tmp / 256) + 128);
  678. if (JD_FASTDECODE >= 1) {
  679. for (i = 0; i < 64; bp[i++] = d) ;
  680. } else {
  681. memset(bp, d, 64);
  682. }
  683. } else {
  684. block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */
  685. }
  686. }
  687. }
  688. bp += 64; /* Next block */
  689. }
  690. return JDR_OK; /* All blocks have been loaded successfully */
  691. }
  692. /*-----------------------------------------------------------------------*/
  693. /* Output an MCU: Convert YCrCb to RGB and output it in RGB form */
  694. /*-----------------------------------------------------------------------*/
  695. static JRESULT mcu_output (
  696. register JDEC* jd, /* Pointer to the decompressor object */
  697. int (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
  698. unsigned int x, /* MCU location in the image */
  699. unsigned int y /* MCU location in the image */
  700. )
  701. {
  702. //const int CVACC = (sizeof (int) > 2) ? 1024 : 128; /* Adaptive accuracy for both 16-/32-bit systems */
  703. const int CVACC = 1024; /* Adaptive accuracy for both 16-/32-bit systems */
  704. register const int C1 = 1024 * 1.772;
  705. register const int C2 = 1024 * 0.344;
  706. register const int C3 = 1024 * 0.714;
  707. register const int C4 = 1024 * 1.402;
  708. register unsigned int ix, iy, mx, my, rx, ry;
  709. register int yy, cb, cr;
  710. jd_yuv_t *py, *pc;
  711. register uint8_t *pix;
  712. JRECT rect;
  713. mx = jd->msx * 8; my = jd->msy * 8; /* MCU size (pixel) */
  714. //HV_LOGI("mx: %d my: %d", mx, my);
  715. rx = (x + mx <= jd->width) ? mx : jd->width - x; /* Output rectangular size (it may be clipped at right/bottom end of image) */
  716. ry = (y + my <= jd->height) ? my : jd->height - y;
  717. if (JD_USE_SCALE) {
  718. rx >>= jd->scale; ry >>= jd->scale;
  719. if (!rx || !ry) return JDR_OK; /* Skip this MCU if all pixel is to be rounded off */
  720. x >>= jd->scale; y >>= jd->scale;
  721. }
  722. rect.left = x; rect.right = x + rx - 1; /* Rectangular area in the frame buffer */
  723. rect.top = y; rect.bottom = y + ry - 1;
  724. if (!JD_USE_SCALE || jd->scale != 3) { /* Not for 1/8 scaling */
  725. pix = (uint8_t*)jd->workbuf;
  726. //if (JD_FORMAT != 2) { /* RGB output (build an RGB MCU from Y/C component) */
  727. if (jd->format != 2) { /* RGB output (build an RGB MCU from Y/C component) */
  728. for (iy = 0; iy < my; iy++) {
  729. pc = py = jd->mcubuf;
  730. if (my == 16) { /* Double block height? */
  731. pc += 64 * 4 + (iy >> 1) * 8;
  732. if (iy >= 8) py += 64;
  733. } else { /* Single block height */
  734. pc += mx * 8 + iy * 8;
  735. }
  736. py += iy * 8;
  737. for (ix = 0; ix < mx; ix++) {
  738. cb = pc[0] - 128; /* Get Cb/Cr component and remove offset */
  739. cr = pc[64] - 128;
  740. if (mx == 16) { /* Double block width? */
  741. if (ix == 8) py += 64 - 8; /* Jump to next block if double block heigt */
  742. pc += ix & 1; /* Step forward chroma pointer every two pixels */
  743. } else { /* Single block width */
  744. pc++; /* Step forward chroma pointer every pixel */
  745. }
  746. yy = *py++; /* Get Y component */
  747. //*pix++ = /*B*/ BYTECLIP(yy + ((int)(1.772 * CVACC) * cb) / CVACC);
  748. //*pix++ = /*G*/ BYTECLIP(yy - ((int)(0.344 * CVACC) * cb + (int)(0.714 * CVACC) * cr) / CVACC);
  749. //*pix++ = /*R*/ BYTECLIP(yy + ((int)(1.402 * CVACC) * cr) / CVACC);
  750. if (jd->format == JDF_BGR888 || jd->format == JDF_BGR565)
  751. {
  752. *pix++ = /*B*/ BYTECLIP(yy + ((C1 * cb) >> 10));
  753. *pix++ = /*G*/ BYTECLIP(yy - ((C2 * cb + C3 * cr) >> 10));
  754. *pix++ = /*R*/ BYTECLIP(yy + ((C4 * cr) >> 10));
  755. }
  756. else
  757. {
  758. *pix++ = /*R*/ BYTECLIP(yy + ((C4 * cr) >> 10));
  759. *pix++ = /*G*/ BYTECLIP(yy - ((C2 * cb + C3 * cr) >> 10));
  760. *pix++ = /*B*/ BYTECLIP(yy + ((C1 * cb) >> 10));
  761. }
  762. }
  763. }
  764. } else { /* Monochrome output (build a grayscale MCU from Y comopnent) */
  765. for (iy = 0; iy < my; iy++) {
  766. py = jd->mcubuf + iy * 8;
  767. if (my == 16) { /* Double block height? */
  768. if (iy >= 8) py += 64;
  769. }
  770. for (ix = 0; ix < mx; ix++) {
  771. if (mx == 16) { /* Double block width? */
  772. if (ix == 8) py += 64 - 8; /* Jump to next block if double block height */
  773. }
  774. if (JD_FASTDECODE >= 1) {
  775. *pix++ = BYTECLIP(*py++); /* Get and store a Y value as grayscale */
  776. } else {
  777. *pix++ = *py++; /* Get and store a Y value as grayscale */
  778. }
  779. }
  780. }
  781. }
  782. /* Descale the MCU rectangular if needed */
  783. if (JD_USE_SCALE && jd->scale) {
  784. unsigned int x, y, r, g, b, s, w, a;
  785. uint8_t *op;
  786. /* Get averaged RGB value of each square correcponds to a pixel */
  787. s = jd->scale * 2; /* Number of shifts for averaging */
  788. w = 1 << jd->scale; /* Width of square */
  789. //a = (mx - w) * (JD_FORMAT != 2 ? 3 : 1); /* Bytes to skip for next line in the square */
  790. a = (mx - w) * (jd->format != 2 ? 3 : 1); /* Bytes to skip for next line in the square */
  791. op = (uint8_t*)jd->workbuf;
  792. for (iy = 0; iy < my; iy += w) {
  793. for (ix = 0; ix < mx; ix += w) {
  794. //pix = (uint8_t*)jd->workbuf + (iy * mx + ix) * (JD_FORMAT != 2 ? 3 : 1);
  795. pix = (uint8_t*)jd->workbuf + (iy * mx + ix) * (jd->format != 2 ? 3 : 1);
  796. r = g = b = 0;
  797. for (y = 0; y < w; y++) { /* Accumulate RGB value in the square */
  798. for (x = 0; x < w; x++) {
  799. r += *pix++; /* Accumulate R or Y (monochrome output) */
  800. //if (JD_FORMAT != 2) { /* RGB output? */
  801. if (jd->format != 2) { /* RGB output? */
  802. g += *pix++; /* Accumulate G */
  803. b += *pix++; /* Accumulate B */
  804. }
  805. }
  806. pix += a;
  807. } /* Put the averaged pixel value */
  808. *op++ = (uint8_t)(r >> s); /* Put R or Y (monochrome output) */
  809. //if (JD_FORMAT != 2) { /* RGB output? */
  810. if (jd->format != 2) { /* RGB output? */
  811. *op++ = (uint8_t)(g >> s); /* Put G */
  812. *op++ = (uint8_t)(b >> s); /* Put B */
  813. }
  814. }
  815. }
  816. }
  817. } else { /* For only 1/8 scaling (left-top pixel in each block are the DC value of the block) */
  818. /* Build a 1/8 descaled RGB MCU from discrete comopnents */
  819. pix = (uint8_t*)jd->workbuf;
  820. pc = jd->mcubuf + mx * my;
  821. cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
  822. cr = pc[64] - 128;
  823. for (iy = 0; iy < my; iy += 8) {
  824. py = jd->mcubuf;
  825. if (iy == 8) py += 64 * 2;
  826. for (ix = 0; ix < mx; ix += 8) {
  827. yy = *py; /* Get Y component */
  828. py += 64;
  829. //if (JD_FORMAT != 2) {
  830. if (jd->format != 2) {
  831. *pix++ = /*R*/ BYTECLIP(yy + ((C4 * cr) >> 10));
  832. *pix++ = /*G*/ BYTECLIP(yy - ((C2 * cb + C3 * cr) >> 10));
  833. *pix++ = /*B*/ BYTECLIP(yy + ((C1 * cb) >> 10));
  834. } else {
  835. *pix++ = yy;
  836. }
  837. }
  838. }
  839. }
  840. /* Squeeze up pixel table if a part of MCU is to be truncated */
  841. mx >>= jd->scale;
  842. if (rx < mx) { /* Is the MCU spans rigit edge? */
  843. uint8_t *s, *d;
  844. unsigned int x, y;
  845. s = d = (uint8_t*)jd->workbuf;
  846. for (y = 0; y < ry; y++) {
  847. for (x = 0; x < rx; x++) { /* Copy effective pixels */
  848. *d++ = *s++;
  849. //if (JD_FORMAT != 2) {
  850. if (jd->format != 2) {
  851. *d++ = *s++;
  852. *d++ = *s++;
  853. }
  854. }
  855. //s += (mx - rx) * (JD_FORMAT != 2 ? 3 : 1); /* Skip truncated pixels */
  856. s += (mx - rx) * (jd->format != 2 ? 3 : 1); /* Skip truncated pixels */
  857. }
  858. }
  859. /* Convert RGB888 to RGB565 if needed */
  860. //if (JD_FORMAT == 1) {
  861. if (jd->format == JDF_RGB565 || jd->format == JDF_BGR565) {
  862. register uint8_t *s = (uint8_t*)jd->workbuf;
  863. register uint16_t w, *d = (uint16_t*)s;
  864. register unsigned int n = rx * ry;
  865. /*
  866. if (jd->swap)
  867. {
  868. do {
  869. w = (*s++ & 0xF8) << 8; // RRRRR-----------
  870. w |= (*s++ & 0xFC) << 3; // -----GGGGGG-----
  871. w |= *s++ >> 3; // -----------BBBBB
  872. *d++ = (w << 8) | (w >> 8); // Swap bytes
  873. } while (--n);
  874. }
  875. else
  876. */
  877. #if 0
  878. do {
  879. w = ( *s++ & 0xF8) << 8; // RRRRR-----------
  880. w |= (*s++ & 0xFC) << 3; // -----GGGGGG-----
  881. w |= *s++ >> 3; // -----------BBBBB
  882. *d++ = w;
  883. } while (--n);
  884. #else
  885. do {
  886. //w = (*s++) >> 3; // RRRRR-----------
  887. //w |= ((*s++) >> 2) << 5; // -----GGGGGG-----
  888. //w |= ((*s++) >> 3) << 11; // -----------BBBBB
  889. w = (s[0] >> 3) | ((s[1] >> 2) << 5) | ((s[2] >> 3) << 11);
  890. s += 3;
  891. *d++ = w;
  892. } while (--n);
  893. #endif
  894. }
  895. #if 0
  896. //else if (JD_FORMAT == 0)
  897. else if (jd->format == 0)
  898. {
  899. uint8_t *s = (uint8_t*)jd->workbuf;
  900. uint8_t *d = NULL;
  901. uint8_t w = 0;
  902. unsigned int n = rx * ry;
  903. if (!jd->swap)
  904. {
  905. do {
  906. d = s + 2;
  907. w = *s;
  908. *s = *d;
  909. *d = w;
  910. s += 3;
  911. } while (--n);
  912. }
  913. }
  914. #endif
  915. /* Output the rectangular */
  916. return outfunc(jd, jd->workbuf, &rect) ? JDR_OK : JDR_INTR;
  917. }
  918. /*-----------------------------------------------------------------------*/
  919. /* Analyze the JPEG image and Initialize decompressor object */
  920. /*-----------------------------------------------------------------------*/
  921. #define LDB_WORD(ptr) (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1))
  922. JRESULT jd_prepare (
  923. JDEC* jd, /* Blank decompressor object */
  924. size_t (*infunc)(JDEC*, uint8_t*, size_t), /* JPEG strem input function */
  925. void* pool, /* Working buffer for the decompression session */
  926. size_t sz_pool, /* Size of working buffer */
  927. JFORMAT format, /* Added by sunxiaobin, specify output format. 0 - rgb888 1 - rgb565 */
  928. const void* dev /* I/O device identifier for the session */
  929. )
  930. {
  931. uint8_t *seg, b;
  932. uint16_t marker;
  933. unsigned int n, i, ofs;
  934. size_t len;
  935. JRESULT rc;
  936. uint8_t tmp = jd->swap; // Copy the swap flag
  937. memset(jd, 0, sizeof (JDEC)); /* Clear decompression object (this might be a problem if machine's null pointer is not all bits zero) */
  938. jd->pool = pool; /* Work memroy */
  939. jd->sz_pool = sz_pool; /* Size of given work memory */
  940. jd->infunc = infunc; /* Stream input function */
  941. jd->format = format;
  942. jd->device = dev; /* I/O device identifier */
  943. jd->swap = tmp; // Restore the swap flag
  944. jd->inbuf = seg = alloc_pool(jd, JD_SZBUF); /* Allocate stream input buffer */
  945. if (!seg) return JDR_MEM1;
  946. ofs = marker = 0; /* Find SOI marker */
  947. do {
  948. if (jd->infunc(jd, seg, 1) != 1) return JDR_INP; /* Err: SOI was not detected */
  949. ofs++;
  950. marker = marker << 8 | seg[0];
  951. } while (marker != 0xFFD8);
  952. for (;;) { /* Parse JPEG segments */
  953. /* Get a JPEG marker */
  954. if (jd->infunc(jd, seg, 4) != 4) return JDR_INP;
  955. marker = LDB_WORD(seg); /* Marker */
  956. len = LDB_WORD(seg + 2); /* Length field */
  957. if (len <= 2 || (marker >> 8) != 0xFF) return JDR_FMT1;
  958. len -= 2; /* Segent content size */
  959. ofs += 4 + len; /* Number of bytes loaded */
  960. //HV_LOGI("len %d marker 0x%x", len, marker & 0xff);
  961. switch (marker & 0xFF) {
  962. case 0xC0: /* SOF0 (baseline JPEG) */
  963. if (len > JD_SZBUF) return JDR_MEM2;
  964. if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */
  965. jd->width = LDB_WORD(&seg[3]); /* Image width in unit of pixel */
  966. jd->height = LDB_WORD(&seg[1]); /* Image height in unit of pixel */
  967. jd->ncomp = seg[5]; /* Number of color components */
  968. if (jd->ncomp != 3 && jd->ncomp != 1) return JDR_FMT3; /* Err: Supports only Grayscale and Y/Cb/Cr */
  969. /* Check each image component */
  970. for (i = 0; i < jd->ncomp; i++) {
  971. b = seg[7 + 3 * i]; /* Get sampling factor */
  972. if (i == 0) { /* Y component */
  973. if (b != 0x11 && b != 0x22 && b != 0x21) { /* Check sampling factor */
  974. return JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
  975. }
  976. jd->msx = b >> 4; jd->msy = b & 15; /* Size of MCU [blocks] */
  977. } else { /* Cb/Cr component */
  978. if (b != 0x11) return JDR_FMT3; /* Err: Sampling factor of Cb/Cr must be 1 */
  979. }
  980. jd->qtid[i] = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */
  981. if (jd->qtid[i] > 3) return JDR_FMT3; /* Err: Invalid ID */
  982. }
  983. break;
  984. case 0xDD: /* DRI - Define Restart Interval */
  985. if (len > JD_SZBUF) return JDR_MEM2;
  986. if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */
  987. jd->nrst = LDB_WORD(seg); /* Get restart interval (MCUs) */
  988. break;
  989. case 0xC4: /* DHT - Define Huffman Tables */
  990. if (len > JD_SZBUF) return JDR_MEM2;
  991. if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */
  992. rc = create_huffman_tbl(jd, seg, len); /* Create huffman tables */
  993. if (rc) return rc;
  994. break;
  995. case 0xDB: /* DQT - Define Quaitizer Tables */
  996. if (len > JD_SZBUF) return JDR_MEM2;
  997. if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */
  998. rc = create_qt_tbl(jd, seg, len); /* Create de-quantizer tables */
  999. if (rc) return rc;
  1000. break;
  1001. case 0xDA: /* SOS - Start of Scan */
  1002. if (len > JD_SZBUF) return JDR_MEM2;
  1003. if (jd->infunc(jd, seg, len) != len) return JDR_INP; /* Load segment data */
  1004. if (!jd->width || !jd->height) return JDR_FMT1; /* Err: Invalid image size */
  1005. if (seg[0] != jd->ncomp) return JDR_FMT3; /* Err: Wrong color components */
  1006. /* Check if all tables corresponding to each components have been loaded */
  1007. for (i = 0; i < jd->ncomp; i++) {
  1008. b = seg[2 + 2 * i]; /* Get huffman table ID */
  1009. if (b != 0x00 && b != 0x11) return JDR_FMT3; /* Err: Different table number for DC/AC element */
  1010. n = i ? 1 : 0; /* Component class */
  1011. if (!jd->huffbits[n][0] || !jd->huffbits[n][1]) { /* Check huffman table for this component */
  1012. return JDR_FMT1; /* Err: Nnot loaded */
  1013. }
  1014. if (!jd->qttbl[jd->qtid[i]]) { /* Check dequantizer table for this component */
  1015. return JDR_FMT1; /* Err: Not loaded */
  1016. }
  1017. }
  1018. /* Allocate working buffer for MCU and pixel output */
  1019. n = jd->msy * jd->msx; /* Number of Y blocks in the MCU */
  1020. if (!n) return JDR_FMT1; /* Err: SOF0 has not been loaded */
  1021. len = n * 64 * 2 + 64; /* Allocate buffer for IDCT and RGB output */
  1022. if (len < 256) len = 256; /* but at least 256 byte is required for IDCT */
  1023. jd->workbuf = alloc_pool(jd, len); /* and it may occupy a part of following MCU working buffer for RGB output */
  1024. if (!jd->workbuf) return JDR_MEM1; /* Err: not enough memory */
  1025. jd->mcubuf = alloc_pool(jd, (n + 2) * 64 * sizeof (jd_yuv_t)); /* Allocate MCU working buffer */
  1026. if (!jd->mcubuf) return JDR_MEM1; /* Err: not enough memory */
  1027. /* Align stream read offset to JD_SZBUF */
  1028. if (ofs %= JD_SZBUF) {
  1029. jd->dctr = jd->infunc(jd, seg + ofs, (size_t)(JD_SZBUF - ofs));
  1030. }
  1031. jd->dptr = seg + ofs - (JD_FASTDECODE ? 0 : 1);
  1032. return JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */
  1033. case 0xC1: /* SOF1 */
  1034. case 0xC2: /* SOF2 */
  1035. case 0xC3: /* SOF3 */
  1036. case 0xC5: /* SOF5 */
  1037. case 0xC6: /* SOF6 */
  1038. case 0xC7: /* SOF7 */
  1039. case 0xC9: /* SOF9 */
  1040. case 0xCA: /* SOF10 */
  1041. case 0xCB: /* SOF11 */
  1042. case 0xCD: /* SOF13 */
  1043. case 0xCE: /* SOF14 */
  1044. case 0xCF: /* SOF15 */
  1045. case 0xD9: /* EOI */
  1046. return JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */
  1047. default: /* Unknown segment (comment, exif or etc..) */
  1048. /* Skip segment data (null pointer specifies to remove data from the stream) */
  1049. if (jd->infunc(jd, 0, len) != len) return JDR_INP;
  1050. }
  1051. }
  1052. }
  1053. /*-----------------------------------------------------------------------*/
  1054. /* Start to decompress the JPEG picture */
  1055. /*-----------------------------------------------------------------------*/
  1056. JRESULT jd_decomp (
  1057. JDEC* jd, /* Initialized decompression object */
  1058. int (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
  1059. uint8_t scale /* Output de-scaling factor (0 to 3) */
  1060. )
  1061. {
  1062. unsigned int x, y, mx, my;
  1063. uint16_t rst, rsc;
  1064. JRESULT rc;
  1065. if (scale > (JD_USE_SCALE ? 3 : 0)) return JDR_PAR;
  1066. jd->scale = scale;
  1067. mx = jd->msx * 8; my = jd->msy * 8; /* Size of the MCU (pixel) */
  1068. jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Initialize DC values */
  1069. rst = rsc = 0;
  1070. rc = JDR_OK;
  1071. for (y = 0; y < jd->height; y += my) { /* Vertical loop of MCUs */
  1072. for (x = 0; x < jd->width; x += mx) { /* Horizontal loop of MCUs */
  1073. if (jd->nrst && rst++ == jd->nrst) { /* Process restart interval if enabled */
  1074. rc = restart(jd, rsc++);
  1075. if (rc != JDR_OK) return rc;
  1076. rst = 1;
  1077. }
  1078. rc = mcu_load(jd); /* Load an MCU (decompress huffman coded stream, dequantize and apply IDCT) */
  1079. if (rc != JDR_OK) return rc;
  1080. rc = mcu_output(jd, outfunc, x, y); /* Output the MCU (YCbCr to RGB, scaling and output) */
  1081. if (rc != JDR_OK) return rc;
  1082. }
  1083. }
  1084. return rc;
  1085. }